Como usar automação com Python e IA na análise de ações

 

Introdução

No cenário atual, profissionais de finanças buscam formas mais rápidas, eficientes e precisas para analisar dados e tomar decisões. Uma das grandes revoluções para isso é o uso combinado de Python, automação e modelos de linguagem grande (LLMs), como o Google Gemini. O dashboard que criamos é um ótimo exemplo prático dessa integração, reunindo dados, cálculos, visualizações e análise textual em um único ambiente.

O que foi desenvolvido?

O projeto consiste em um dashboard interativo que automatiza todo o fluxo de análise de um portfólio de ações. A solução foi construída com as seguintes etapas:

Para obter o código e o tutorial deste exercício faça parte do Clube AM e receba toda semana os códigos em R/Python, vídeos, tutoriais e suporte completo para dúvidas.

1. Coleta automática de dados financeiros

Através da biblioteca yfinance, o sistema coleta dados históricos de qualquer ativo da B3 de forma totalmente automatizada. O usuário apenas insere os tickers desejados, as participações de cada ativo no portfólio e a data de início da análise. Assim, o processo elimina a necessidade de consultas manuais ou atualizações em planilhas, garantindo mais agilidade e confiabilidade.

2. Processamento e cálculo de indicadores financeiros

Depois da coleta, o dashboard executa automaticamente os principais cálculos financeiros essenciais para a análise de risco e retorno:

  • Retorno esperado: média dos retornos ponderados pelas alocações.
  • Volatilidade anualizada: medida do risco associado ao portfólio.
  • Desvio padrão móvel: avaliação da evolução da volatilidade ao longo do tempo.
  • Assimetria (skewness): identificação de distribuições inclinadas, que indicam riscos assimétricos.
  • Curtose: detecção de eventos extremos, como perdas ou ganhos atípicos.

Esse processamento é feito automaticamente, permitindo atualizações instantâneas sempre que novos dados são inseridos.

3. Visualização interativa com gráficos dinâmicos

O dashboard utiliza o Plotly para gerar gráficos que facilitam a visualização de dados financeiros. É possível observar de forma clara:

  • A evolução da volatilidade do portfólio.
  • O comparativo entre risco e retorno dos ativos.
  • A distribuição estatística dos retornos com indicadores gráficos de assimetria e curtose.

Essas visualizações tornam a análise mais intuitiva, mesmo para quem não possui conhecimento avançado em estatística.

4. Análise automatizada com Google Gemini

O diferencial deste projeto é o uso de um modelo de linguagem grande (LLM) — o Google Gemini — que interpreta os dados financeiros e gera automaticamente uma análise textual. A IA é capaz de:

  • Detectar tendências nos dados, como aumento da volatilidade.
  • Destacar ativos com maior risco ou potencial de retorno.
  • Produzir insights personalizados sobre a gestão do portfólio.

Essa etapa representa uma evolução na automação com Python e IA na análise financeira, pois combina análise quantitativa e interpretação qualitativa de forma automatizada.

Quais são os benefícios da automação na análise financeira?

Implementar um dashboard como este proporciona vantagens estratégicas para profissionais e investidores:

  • Eficiência: elimina tarefas manuais e repetitivas, acelerando o processo analítico.
  • Precisão: reduz erros humanos na coleta e no cálculo de dados.
  • Interpretação automatizada: com o Google Gemini, a IA explica os números em linguagem natural, democratizando o acesso à análise financeira.
  • Flexibilidade: o sistema se adapta a qualquer portfólio, com possibilidade de incluir novos indicadores ou modelos no futuro.
  • Escalabilidade: pode ser expandido para integrar fontes de dados adicionais, como indicadores macroeconômicos ou dados alternativos.

Como a automação com Python e IA transforma a análise de investimentos?

A principal contribuição da automação com Python e IA na análise financeira é a capacidade de unir tecnologia, estatística e inteligência artificial em um fluxo contínuo. Com isso, conseguimos:

  • Automatizar processos de data science aplicados a finanças.
  • Gerar análises consistentes sem a necessidade de intervenção humana.
  • Aumentar a frequência e a profundidade das análises, com mais segurança e agilidade.

Esse tipo de solução é fundamental para quem atua no mercado financeiro e busca vantagem competitiva através de data-driven decisions.

Considerações Finais

O dashboard que criamos é um exemplo claro de como a automação com Python e IA na análise financeira pode elevar o nível das análises e das decisões de investimento. Ele conecta dados, cálculos e insights de forma automática e inteligente, reduzindo barreiras técnicas e aumentando a eficiência.

Abaixo, você confere imagens do dashboard, onde as análises visuais e o relatório gerado pela IA se combinam para oferecer uma visão completa do portfólio.

Quer aprender mais?

Conheça nossa Formação do Zero à Análise de Dados Econômicos e Financeiros usando Python e Inteligência Artificial. Aprenda do ZERO a coletar, tratar, construir modelos e apresentar dados econômicos e financeiros com o uso de Python e IA.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Construindo RAG para Análise do COPOM com SmolAgents

Este exercício demonstra, passo a passo, como aplicar o conceito de Retrieval-Augmented Generation (RAG) com agentes inteligentes na análise de documentos econômicos. Utilizando a biblioteca SmolAgents, desenvolvemos um agente capaz de interpretar e responder a perguntas sobre as atas do COPOM com base em buscas semânticas.

Como criar um Agente de IA?

Unindo conhecimentos sobre Tools, LLMs e Vector Stores, agora é hora de integrar diferentes conceitos e aprender a construir um Agente de IA completo. Neste post, nosso objetivo será criar um Agente capaz de responder perguntas sobre o cenário macroeconômico brasileiro, utilizando dados de expectativas de mercado do Boletim Focus do Banco Central do Brasil (BCB) e o framework LangChain no Python.

Como criar um Supervisor de Agentes com LangGraph

Este tutorial mostra como construir um supervisor multiagente usando LangGraph, integrando dois agentes especialistas: um focado em pesquisa na internet com Tavily e outro especializado em operações matemáticas. Para orquestrar esses agentes, utilizamos o modelo Gemini 2.0 da Google.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.