Construindo o juro real e o juro neutro em Python

Uma importante medida para acompanhar o sentido da política monetária é comparar o Juro real com o Juro de equilíbrio da economia. A diferença entre os dois indicadores permite dizer se a política monetária está em sentido expansionista ou contracionista. No post de hoje mostraremos como é possível construir o Juro real e o Juro neutro utilizando o Python, tema do nosso curso Python para Investimentos.

O juro real que considerei aqui é o juro real ex-ante, obtido a partir do juro do swap DI 360 deflacionado pela expectativa de inflação para os próximos 12 meses. Já o juro de equilíbrio segue uma proxy definida no Relatório de Inflação de dezembro de 2019, dada pela Selic esperada para t+3 deflacionada pela inflação esperada para t+3.

 

Para o cálculo, utilizamos a equação de Fisher, que nos dá a diferença entre o juro nominal e a expectativa de inflação.

 

_________________

Para saber mais sobre esse tema, acompanhe o lançamento do nosso Curso de Python para Investimentos.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Econometria, ML ou IA para previsão da PMS?

Prever a Pesquisa Mensal de Serviços (PMS/IBGE) é um desafio por natureza: trata-se de uma série mensal, sujeita a volatilidade e choques que vão de fatores sazonais a mudanças estruturais no setor. Para enfrentar esse problema, realizamos um exercício de comparação entre três abordagens de modelagem: econometria tradicional (ARIMA), machine learning (XGBoost) e inteligência artificial (TimeGPT).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.