Simulações de Monte Carlo no Python

Vamos continuar a série de postagens sobre como construir um Dashboard de métricas relacionadas a avaliação de ações e construção de um Portfolio de investimentos no Python. Trazemos nessa semana a construção de simulações de Monte Carlo no Python.

Método Monte Carlo

O conceito de Simulações Monte Carlo tem origem nos trabalhos de Stanislaw Ulam e John von Neumann, durante a Segunda Guerra Mundial, quando estavam envolvidos em pesquisas sobre a bomba atômica. Eles desenvolveram o método para resolver problemas matemáticos complexos, utilizando geração aleatória de números para representar incertezas e realizar experimentos virtuais em grande escala.

Para construir as Simulações Monte Carlo seguimos três etapas principais:

  1. Modelagem: O primeiro passo é definir um modelo matemático ou estatístico que represente o problema em questão. Isso envolve identificar as variáveis de entrada e as relações entre elas. Por exemplo, suponha que queremos simular o crescimento de um investimento ao longo do tempo. Podemos usar o modelo matemático:Growth(t) = Growth(t-1) * Return(t)Onde Growth(t) é o valor do investimento no tempo t, Growth(t-1) é o valor do investimento no tempo anterior, e Return(t) é o retorno do investimento no tempo t.
  2. Geração de Números Aleatórios: Utilizando técnicas de geração de números aleatórios, como a distribuição uniforme ou outras distribuições específicas, são gerados valores aleatórios para as variáveis de entrada do modelo. Esses valores são amostras representativas da incerteza envolvida no problema. Por exemplo, podemos gerar retornos aleatórios a partir de uma distribuição normal com média e desvio padrão dados.
  3. Execução do Modelo: Os valores aleatórios gerados são inseridos no modelo, e o modelo é executado repetidamente para obter resultados. Cada execução é considerada uma simulação independente. Por exemplo, podemos executar o modelo de crescimento do investimento várias vezes, com diferentes retornos aleatórios em cada simulação.

Dashboard de Simulações de Monte Carlo do Portfólio

Para obter todo o código do processo de criação do Dashboard, faça parte do Clube AM, o repositório de códigos da Análise Macro, contendo exercícios semanais.

Para construir as simulações, partirmos do pressuposto que os retornos possuem uma distribuição normal. A partir disso, geramos diversas simulações no Python usando o módulo random.normal do Numpy, inserindo como inputs a média e desvio padrão histórico dos ativos analisados. A partir dos resultados, construímos os diferentes valores esperados das simulação em t dias.

Para facilitar todo o trabalho de criar as simulações de Monte Carlo, é possível criar um Dashboard, que automatiza todo o processo de coleta, tratamento, e a visualização de dados. No Dashboard abaixo, o processo de coleta de dados financeiros foi feito por meio da biblioteca yfinance. O Dashboard é construído no ambiente da biblioteca Shiny e os gráficos construídos por meio do Plotly.

_____________________

Quer saber mais?

Veja nossa trilha de cursos de Finanças Quantitativas

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como Criar um Agente Analista Financeiro com LangGraph e Dados da CVM

Este post apresenta a construção de um sistema multiagente para análise financeira automatizada com LangGraph. A partir dos dados das demonstrações contábeis da CVM, mostramos como agentes especializados podem interpretar perguntas, consultar bancos de dados e gerar análises financeiras, simulando o trabalho de um analista.

O que é e como funcionam Sistemas Multi-Agentes

Sistemas multi-agentes (MAS) representam uma nova forma de estruturar aplicações de inteligência artificial, especialmente úteis para lidar com problemas complexos e distribuídos. Em vez de depender de um único agente generalista, esses sistemas são compostos por múltiplos agentes especializados que colaboram, competem ou se coordenam para executar tarefas específicas. Neste post, explicamos o que são os MAS, seus principais componentes (como LLMs, ferramentas e processos) e as arquiteturas mais comuns.

Como criar um Agente de IA coletor de dados

A tecnologia de agentes de IA está democratizando o acesso e a manipulação de dados econômicos complexos, tornando-a acessível mesmo para aqueles sem experiência em programação. Neste post discutimos a criação de agentes de IA para coletar dados econômicos brasileiros usando linguagem natural, como "Qual é a expectativa do IPCA para 2025?".

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.