Podcast: Conjuntura econômica e Eleições

gece01Dando continuidade à parceria com o pessoal do Econometricks, eu conversei com o meu amigo Julio Hegedus, economista-chefe da Lopes Filho e professor da Universidade Cândido Mendes. Falamos durante um pouco mais de uma hora sobre os temas da conjuntura econômica, bem como sobre o calendário eleitoral. Dos problemas que têm assolado a economia brasileira, como a "contabilidade criativa" nas contas públicas e o problema energético. A conversa foi bastante fluida e diversos temas foram analisados, dando um amplo panorama do que está acontecendo e o que deve acontecer com o Brasil esse ano, seja em economia, seja no campo político. Confira clicando na figura ao lado!

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Análise de ações com IA - um guia inicial

Neste artigo, você vai aprender a integrar IA na análise de ações de forma automatizada utilizando Python. Ao final, você terá um pipeline completo capaz de coletar dados de mercado, gerar gráficos, elaborar relatórios com linguagem natural.

Quais são as ferramentas de IA?

Um aspecto crucial dos Agentes de IA é a sua capacidade de tomar ações, que acontecem por meio do uso de Ferramentas (Tools). Neste artigo, vamos aprender o que são Tools, como defini-las de forma eficaz e como integrá-las ao seu Agente por meio da System Prompt. Ao fornecer as Tools certas para o seu Agente — e ao descrever claramente como essas Tools funcionam — você pode aumentar drasticamente o que sua IA é capaz de realizar.

Otimizando um Portfólio de Investimentos com Machine Learning

A construção de portfólio ótimo refere-se ao processo de alocar eficientemente capital entre um conjunto predefinido de ativos ou títulos. O campo da construção de portfólio tem sido extensivamente estudado por acadêmicos e profissionais desde a década de 1950, quando Markowitz introduziu sua inovadora abordagem de média-variância para a construção de portfólio. Diante disso, podemos melhorar o processo de alocação de peso de um investimento em um portfólio através do Aprendizado não supervisionado com a aplicação do Hierarchical Risk Parity (HRP). Neste exercício, realizamos uma introdução ao método e mostramos os resultados de um exemplo criado através do Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!