Prever séries temporais é uma tarefa frequente em diversas áreas, porém exige conhecimento e ferramentas específicas. Os modelos de machine learning do Sklearn são populadores, porém são difíceis de aplicar em estruturas temporais de dados. Neste sentido, introduzimos a biblioteca Skforecast, que integra os modelos do Sklearn e a previsão de séries temporais de forma simples.
Neste exercício mostramos como realizar a previsão da Volatilidade do Bitcoin em USD através do modelo HAR. Realizamos uma comparação da especificação proposta dos modelos tipo HAR type utilizando modelos de machine learning. O procedimento de coleta, tratamento e modelagem é realizado através do Python.
Como explicar modelos de previsão de séries temporais econômicas utilizando métodos de Machine Learning? Neste exercício, demonstraremos alguns métodos úteis para avaliar os parâmetros dos preditores em tais modelos. Para isso, utilizaremos o framework da biblioteca Skforecast em Python.
Neste exercício, exploramos como o framework da biblioteca `skforecast` do Python pode ser extremamente útil para a previsão de séries temporais econômicas, utilizando como exemplo as variações no desemprego dos EUA ao longo de um horizonte de 1 ano.