Como quantificar sentimentos e emoções a partir de comunicados de política monetária? Neste exercício utilizamos os statements do FOMC para construir um índice de sentimentos, o que permite comparar a “narrativa” com a prática da política monetária, ou seja, mudanças da taxa de juros. Também avaliamos se tal índice é útil em prever mudanças de política através do teste de causalidade de Granger.
O que informações textuais podem revelar sobre a situação da economia? Como transformar palavras em estatísticas e obter insights? Há algo informativo nas entrelinhas das atas do COPOM? Como usar Machine Learning para interpretar os comunicados da autoridade monetária? Neste exercício, damos continuidade aos posts sobre Natural Language Processing (NLP) demonstrando a aplicação da técnica de topic modeling com as atas do COPOM.
Mineração de textos é uma técnica interessante para obtenção de insights quantitativos através de dados textuais. Com a finalidade de demonstrar seu uso, neste artigo faremos uma breve e introdutória análise das atas do Comitê de Política Monetária – COPOM usando mineração de textos com o auxílio do pacote tidytext na linguagem R.
Tomar decisões rápidas com novas informações no mercado, especialmente em dia de COPOM, pode ser decisivo para estratégias bem sucedidas. Nesse artigo mostramos como analisar o texto da decisão de juros básico da economia, a Selic, usando a ferramenta Shiny.
Neste artigo apresentamos o modelo Naive Bayes para problemas de classificação binária. Mostramos a intuição do modelo e sua formulação matemática, além de pontuar as principais aplicações e casos de uso. Ao final, demonstramos um exemplo aplicado à classificação de spam em comentários do YouTube, usando as linguagens de programação R e Python.