Métodos de reamostragem são ferramentas indispensáveis na estatística moderna. Eles envolvem, basicamente, extrair de forma repetida amostras de um conjunto de treino de modo a reestimar o modelo de interesse em cada uma das amostras, obtendo assim informação adicional sobre o modelo ajustado. Vamos conhecer dois métodos úteis aplicáveis a dados de séries temporais de forma a auxiliar previsões: cross-validation e bootstrap.