Mercado Financeiro e Gestão de Portfólios: inscrições abertas!

Inscrições abertas para a 2ª Turma do nosso super Curso de Mercado Financeiro e Gestão de Portfólios. O Curso é voltado para profissionais do mercado financeiro em busca de novas ferramentas analíticas, professores de graduação e pós-graduação envolvidos no ensino e pesquisa de finanças, bem como estudantes de graduação e pós-graduação em busca de diferenciais competitivos para ingressar no mercado.

Ao se inscrever no Curso de Mercado Financeiro e Gestão de Portfólios, o aluno terá acesso a três blocos de conteúdo: (1) Nivelamento em R; (2) Curso de Mercado Financeiro e Gestão de Portfólios; (3) Laboratórios.

No nivelamento, o aluno terá acesso a uma introdução completa ao universo tidyverse, pacotes do R especialmente construídos para análise de dados. Já nas 15 seções do Curso de Mercado Financeiro e Gestão de Portfólios, o aluno irá aprender tudo sobre os principais produtos e instituições financeiras, risco e retorno de ativos, bem como sobre como construir e administrar o seu portfólio com o R. Por fim, ficará disponível um módulo Laboratórios com a disponibilização de códigos super práticos para a construção de shiny apps.

Confira todas as informações do nosso super Curso aqui.

______________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Regimes da Política Monetária Brasileira com Markov Switching no Python

Este exercício analisa a política monetária brasileira utilizando modelos de Markov Switching Regression. O objetivo é identificar diferentes regimes de política monetária e como eles influenciam a taxa Selic, a meta de inflação e o hiato do produto. Usamos a linguagem de programação Python para o processo de coleta, tratamento, análise e modelagem dos dados.

Como criar janelas móveis de séries temporais usando o Python

Janelas Móveis/Deslizantes, ou Rolling Windows, são termos frequentes na análise de séries temporais. Mas o que são e como aplicá-las no Python? Neste tutorial, mostramos como essa ferramenta é essencial para a análise de dados utilizando como exemplo a correlação móvel de ações brasileiras.

Como incorporar choques em cenários de previsão?

Neste exercício mostramos como incorar choques no cenário de variáveis exógenas para fins de previsão. Usando como exemplo a previsão do IPCA, através de um modelo de machine learning, mostramos os cuidados a serem tomados e uma forma simples de definir o cenário com os choques. Ao final, apresentamos uma previsão com um suposto choque e uma previsão sem o choque para comparação.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.