Gráficos de Área empilhados com o R

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="left" use_border_color="off" border_color="#ffffff" border_style="solid"]

Hoje de manhã publiquei um código para um gráfico de área utilizando os indexadores da dívida bruta brasileira. O gráfico, entretanto, não estava empilhado, apenas sobreposto. Como a soma da participação dos indexadores tem que dá 100%, um gráfico empilhado talvez fique mais ilustrativo, não é mesmo? Para isso, é preciso fazer algumas modificações no código. Ilustro abaixo.

## Carregar pacotes
library(ggplot2)
library(XLConnect)
library(reshape2)
library(xts)
## Importar dados
temp = tempfile()
download.file('http://www.bcb.gov.br/ftp/notaecon/Partggp.zip',temp)
data = unzip(temp, files='Partggp.xls')
data = loadWorkbook(data)
dbgg = readWorksheet(data, sheet = 1, header = TRUE, 
 colTypes = 'numeric')
## Retirar linhas e colunas que não interessam
dbgg = dbgg[, -c(1,2,6,10,15,16,17)] # Retirar colunas desimportantes
dbgg = dbgg[complete.cases(dbgg),-1] # Retirar linhas com NA e coluna 1
## Nomear colunas
colnames(dbgg) = c('Cambial Interna', 'Cambial Externa', 
 'IGP-M', 'IGP-DI', 'IPCA', 'SELIC', 'TJLP', 'TR', 
 'PRÉ-FIXADO')
## Criar vetor de datas para o gráfico 
dates = seq(as.Date('2006-12-01'), as.Date('2016-12-01'), by='1 month')
## Ordenar séries conforme vetor de datas e criar novo data frame 
dbgg = xts(dbgg, order.by=dates)
dbgg = data.frame(time = index(dbgg), melt(as.data.frame(dbgg)))
colnames(dbgg) = c('time', 'Indexador', 'value')
## Gerar gráfico
theme_set(theme_bw())

ggplot(dbgg, aes(x = time, y = value)) + 
 geom_area(aes(colour = Indexador, fill = Indexador))+
 xlab('')+ylab('Participação Percentual')+
 labs(title='Indexadores da Dívida Bruta brasileira',
 caption='analisemacro.com.br')

 

E o resultado vai abaixo...

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row admin_label="row" make_fullwidth="off" use_custom_width="off" width_unit="on" use_custom_gutter="off" padding_mobile="off" background_color="#8300e9" allow_player_pause="off" parallax="off" parallax_method="off" make_equal="off" parallax_1="off" parallax_method_1="off" column_padding_mobile="on"][et_pb_column type="1_2"][et_pb_text admin_label="Texto" background_layout="dark" text_orientation="left" use_border_color="off" border_color="#ffffff" border_style="solid"]

No nosso Curso de Análise de Conjuntura usando o R os alunos aprendem a coletar, tratar, analisar e apresentar dados macroeconômicos usando o poder do R/RStudio e do Beamer/LaTeX. Saiba mais sobre esse curso inovador clicando no botão abaixo!

[/et_pb_text][et_pb_button admin_label="Botão" button_url="https://analisemacro.com.br/cursos-de-r/analise-de-conjuntura/" url_new_window="off" button_text="Ir para o Curso de Análise de Conjuntura" button_alignment="center" background_layout="dark" custom_button="off" button_letter_spacing="0" button_use_icon="default" button_icon_placement="right" button_on_hover="on" button_letter_spacing_hover="0"] [/et_pb_button][/et_pb_column][et_pb_column type="1_2"][et_pb_text admin_label="Texto" background_layout="dark" text_orientation="left" use_border_color="off" border_color="#ffffff" border_style="solid"]

Relatórios, apresentações e exercícios macroeconométricos usando extensivamente o R são feitos no âmbito do Clube do Código, o espaço de compartilhamento de códigos da Análise Macro. Ainda não conhece o Clube?! Saiba mais abaixo.

[/et_pb_text][et_pb_button admin_label="Botão" button_url="https://analisemacro.com.br/clube-do-codigo/" url_new_window="off" button_text="Ir para o Clube do Código" button_alignment="center" background_layout="dark" custom_button="off" button_letter_spacing="0" button_use_icon="default" button_icon_placement="right" button_on_hover="on" button_letter_spacing_hover="0"] [/et_pb_button][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O papel da credibilidade do Banco Central na desinflação da economia

O objetivo deste trabalho é mensurar a credibilidade da política monetária brasileira através de diferentes métricas e verificar empiricamente se uma maior credibilidade contribui para a redução da inflação. Realizamos a modelagem econométrica usando o pacote {systemfit} disponível na linguagem. Ao fim, criamos um relatório reprodutível com a combinação Quarto + R.

Análise de Criptomoedas com Python

Aprenda a estruturar um pipeline de dados financeiros com Python. Ensinamos a construção de um dashboard automatizado para coleta, tratamento e visualização de criptomoedas via API.

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.