Estimando os parâmetros de uma regressão simples com o R

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="1_2"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Abel||||" text_font_size="21" use_border_color="off" border_color="#ffffff" border_style="solid"]

A turma de setembro do nosso Curso de Introdução à Econometria usando o R terá uma grande novidade. A apostila e as listas de exercício foram revisadas e atualizadas com exercícios do livro clássico de Jeffrey Marc Wooldridge. Todos feitos no R, de modo a mostrar para o aluno como a teoria pode ser complementada com a prática. Com isso, trazemos ainda mais aplicações para o curso, o que garante total absorção do conteúdo. Para ilustrar, vamos considerar nesse post o modelo de regressão simples. Primeiro, um pouco de teoria e depois um exemplo do Wooldridge feito no R.

[/et_pb_text][/et_pb_column][et_pb_column type="1_2"][et_pb_image admin_label="Imagem" src="https://analisemacro.com.br/wp-content/uploads/2018/08/postsetembro.png" show_in_lightbox="off" url="https://analisemacro.com.br/cursos-de-r/" url_new_window="off" use_overlay="off" animation="off" sticky="off" align="center" force_fullwidth="off" always_center_on_mobile="on" use_border_color="off" border_color="#ffffff" border_style="solid"]

 

[/et_pb_image][/et_pb_column][/et_pb_row][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Abel||||" text_font_size="21" use_border_color="off" border_color="#ffffff" border_style="solid"]

Estamos interessados em estimar os parâmetros populacionais \beta_0 e \beta_1 de um modelo de regressão simples

(1)   \begin{align*} y = \beta_0 + \beta_1 x + u  \end{align*}

a partir de uma amostra aleatória de y e x. De acordo com Wooldridge, os estimadores de Mínimos Quadrados Ordinários (MQO) serão

(2)   \begin{align*} \hat{\beta}_0 &= \hat{y} - \hat{\beta_1} \bar{x} \\ \hat{\beta_1} &= \frac{Cov(x,y)}{Var{x}}. \end{align*}

Baseado nos parâmetros estimados, a reta de regressão será

(3)   \begin{align*} \hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x. \end{align*}

Para uma dada amostra, nós precisaremos calcular as quatro estatísticas \bar{y}, \bar{x}, Cov(x,y) e Var(x) e colocá-las nessas equações. Para ilustrar, vamos considerar o exemplo 2.3 do Wooldridge sobre Salários de CEOs e Retornos sobre o patrimônio. Para isso, considere o seguinte modelo

(4)   \begin{align*} salary = \beta_0 + \beta_1 roe + u \end{align*}

onde salary é o salário anual de CEO em milhares de dólares e roe é o retorno médio sobre o patrimônio em percentual. O parâmetro \beta_1 irá medir a variação no salário anual quando o retorno médio sobre o patrimônio aumentar em um ponto percentual. Para estimar esse modelo, podemos utilizar o conjunto de dados ceosal1.


data(ceosal1, package='wooldridge')

attach(ceosal1)

Uma vez que tenhamos carregado o conjunto de dados, podemos calcular manualmente os parâmetros \beta_0 e \beta_1, como abaixo.


# Cálculo manual dos parâmetros
b1hat = cov(roe,salary)/var(roe)
b1hat
b0hat = mean(salary) - b1hat*mean(roe)
b0hat

Isto é, a reta de regressão será dada por

(5)   \begin{align*} \hat{salary} = 963.19 + 18.50 * roe. \end{align*}

 Implicando que para um roe = 0, teremos um salário previsto de US$ 963.19, que é o intercepto. Ademais, se \Delta roe = 1, então \Delta salary = US$ 18.50. Podemos, por fim, desenhar a reta de regressão com o código abaixo.


CEOregress = lm(salary ~ roe)
plot(roe, salary, ylim=c(0,4000))
abline(CEOregress, col='red')

E o resultado...

[/et_pb_text][et_pb_image admin_label="Imagem" src="https://analisemacro.com.br/wp-content/uploads/2018/08/coversetembro.png" show_in_lightbox="off" url="https://analisemacro.com.br/cursos-de-r/" url_new_window="off" use_overlay="off" animation="off" sticky="off" align="center" force_fullwidth="off" always_center_on_mobile="on" use_border_color="off" border_color="#ffffff" border_style="solid"]

 

[/et_pb_image][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Tratamento e transformação de séries temporais macroeconômicas para modelagem

"Garbage in, garbage out" é a regra de ouro na previsão macroeconômica. Antes de aplicar qualquer modelo de IA ou econometria para prever indicadores como o IPCA ou o PIB, existe um trabalho crucial de tratamento de dados. Neste post, abrimos os bastidores do nosso dashboard de previsões e mostramos o passo a passo para transformar dados brutos de múltiplas fontes (como BCB, IBGE e FRED) em séries prontas para modelagem. Veja como lidamos com diferentes frequências, aplicamos transformações e usamos metadados para criar um pipeline de dados robusto e automatizado.

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.