Vamos desestatizar o mercado de crédito?

O novo ministro da economia, Paulo Guedes, ao tomar posse fez questão de mencionar a atual estrutura do mercado de crédito brasileiro. Guedes falou da necessidade de desestatizar o mercado. E será que faz sentido o que o ministro disse? Para mostrar, assim como fazemos em nossos Cursos Aplicados de R, podemos usar o R para ver o estoque de crédito na mão de instituições estatais e privadas. O código abaixo pega as séries de crédito para essas diferentes classes de instituições com o pacote rbcb.

library(rbcb)
privado <- get_series(2043, start_date = '2000-01-01')
estatal <- get_series(2007, start_date = '2000-01-01')

Uma vez que tenhamos esses dados, criamos um data frame dividindo as mesmas pelo total de estoque de crédito.

dates <- seq(as.Date('2000-01-01'), as.Date('2018-11-01'), by='1 month')

data <- data.frame(privado=privado$`2043`/(estatal$`2007`+privado$`2043`)*100,
                   estatal=estatal$`2007`/(estatal$`2007`+privado$`2043`)*100)

Utilizamos, então, o pacote xts para ordenar o data frame e depois a função melt para empilhar os dados.

library(xts)
library(reshape2)
data <- xts(data, order.by=dates)
data <- data.frame(time = index(data), melt(as.data.frame(data)))

Por fim, usamos o código abaixo para criar um gráfico ggplot.

library(scales)
library(ggplot2)
ggplot(data, aes(x = time, y = value)) + 
  geom_area(aes(colour = variable, fill = variable))+
  xlab('')+ylab('Participação Percentual')+
  labs(title='Crédito Estatal vs. Crédito Privado',
       caption='Fonte: analisemacro.com.br com dados do Banco Central.')+
  theme(legend.position = 'bottom',
        legend.title=element_blank())+
  scale_x_date(breaks = date_breaks("2 years"),
               labels = date_format("%Y"))

E o resultado é esse daí...

O gráfico parece dar razão a fala do novo ministro da economia. Mais da metade do estoque de operações de crédito no país está nas mãos de instituições estatais, sujeitas a incentivos distintos daqueles observados no mercado. Desestatizar o mercado de crédito parece ser, de fato, algo a se fazer, não é mesmo?

________________________________________________

Aprenda a coletar, tratar, analisar e apresentar dados reais em nossos Cursos Aplicados de R!

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Análise de Criptomoedas com Python

Aprenda a estruturar um pipeline de dados financeiros com Python. Ensinamos a construção de um dashboard automatizado para coleta, tratamento e visualização de criptomoedas via API.

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.