Clube do Código: Propagação da Inflação de Alimentos

Na edição 54 do Clube do Código, de autoria do Renato Lerípio, replicamos o box "Propagação da Inflação de Alimentos" do Relatório de Inflação de setembro de 2018, do Banco Central brasileiro. A ideia é relativamente simples: estimar, através de um VAR, o efeito de choques no IPCA do grupo "Alimentação e bebidas" sobre os demais preços da economia. Esses outros preços são representados por um núcleo, o qual expurga do índice geral os itens do grupo "Alimentação e bebidas" (obviamente) e também itens relacionados à energia. O box não explicita que itens estão inclusos nesta última categoria, então vamos considerar os itens "Combustíveis (veículos)" e "Combustíveis (domésticos)" -- talvez energia elétrica também entre nesta conta, mas vamos ignorar. O importante é que o resultado final fica bem próximo do original e os interessados podem facilmente adaptar de acordo com sua intuição.

O interessante do exercício é que ele fornece uma estimativa do efeito de segunda ordem de choques nos preços dos alimentos. Quem acompanha os relatórios e atas do BC provavelmente já se deparou com essa expressão. Em linhas gerais, o efeito de segunda ordem ocorre quando o choque no preço de um determinado segmento contamina o restante do conjunto de preços da economia -- e vale lembrar que, neste caso, a política monetária deve ser reativa. Do ponto de vista operacional, um outro aspecto interessante do exercício é que ele envolve uma série de ferramentas que são utilizadas com bastante frequência em análises e modelagem: acumular valores de uma série, modificar a frequência e aplicar ajuste sazonal.

Abaixo, colocamos o gráfico que ilustra a função impulso-resposta extraída do VAR estimado.

Membros do Clube do Código já podem acessar o código do exercício no repositório do github.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é um Vector Database e como criar um com LangChain

Nesta postagem, mostramos como construir um pipeline simples de RAG (Retrieval-Augmented Generation) usando o LangChain, o modelo Gemini 2.0 Flash e o Vector Database Chroma. Utilizamos como exemplo o Relatório de Inflação de junho de 2025 do Banco Central do Brasil. O fluxo envolve o download e leitura do PDF, divisão do texto com RecursiveCharacterTextSplitter, geração de embeddings com Gemini, armazenamento vetorial com Chroma e busca semântica para responder perguntas com base no conteúdo do relatório. É uma aplicação prática e didática para economistas que desejam integrar IA ao seu fluxo de análise.

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Análise de Dados com REPL Tool e LLM usando LangGraph

Neste post, vamos mostrar como você pode criar um agente que interpreta e executa código Python em tempo real, utilizando o REPL-Tool e um LLM da família Gemini. Começamos com um exemplo genérico e, em seguida, aplicamos a mesma estrutura à análise econômica de uma série histórica do IPCA.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.