Investigando a relação entre o Ibovespa e a variação da FBCF

Na edição 55 do Clube do Código, a ser divulgada para os membros na próxima semana, continuo a investigação iniciada em um comentário de conjuntura sobre a relação entre o Ibovespa e a variação interanual da FBCF. Dessa vez, estimamos um Vetor de Correção de Erros (VEC). Fazemos a análise das funções impulso-resposta e da decomposição de variância a partir do modelo estimado. Ademais, também aplicamos o procedimento de Toda-Yamamoto de modo a investigar causalidade.

Os resultados encontrados sugerem que um choque no Ibovespa tem um efeito positivo na variação interanual da FBCF, aumentando a mesma em mais de 3 pontos percentuais após três trimestres. A decomposição de variância, por seu turno, revela que cerca de 30% da variância da variação interanual da FBCF é explicada pelo Ibovespa, passados 12 trimestres. Por fim, o teste de precedência temporal sugere que o Ibovespa ajuda a explicar a variação da FBCF, enquanto não encontramos evidências no caso contrário.

Membros do Clube do Código têm acesso a todos os códigos que geraram o exercício no repositório do github.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar Modelos de Linguagem no R com o pacote {elmer}

Na análise de dados contemporânea, o uso de Modelos de Linguagem (LLMs) vem se consolidando como uma ferramenta poderosa para automatizar e aprimorar tarefas analíticas. Ao integrarmos LLMs a pacotes como o ellmer, podemos ampliar nossas capacidades de extração, interpretação e automação de dados no ambiente R. Neste post, exploramos o papel desses modelos e detalhamos como o ellmer opera dentro do universo da linguagem de programação R.

Introdução ao AutoGen: Agentes Inteligentes na Análise Financeira

O AutoGen é um framework da Microsoft que permite criar agentes de IA colaborativos. Na área financeira, pode automatizar a coleta de dados, cálculos de indicadores e geração de relatórios. Este artigo apresenta os conceitos básicos e um exemplo aplicado a ações de empresas.

Como usar LangGraph e LLMs para prever a inflação no Brasil

Este post apresenta um estudo de caso sobre como utilizar o LangGraph e modelos de linguagem para estruturar um sistema multiagente voltado à previsão do IPCA. O exercício cria um sistema que utiliza-se de personas analíticas que trabalham em paralelo, permitindo validar previsões, calcular métricas de erro e consolidar relatórios automatizados. A abordagem demonstra como fluxos multiagentes podem apoiar a análise econômica, oferecendo múltiplas perspectivas e maior consistência nos resultados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.