Nowcasting do PIB: um modelo de fatores

A edição 57 do Clube do Código aborda o tema de nowcasting. Em termos bem gerais, nowcasting é a previsão do presente -- ou do futuro/passado muito recente. O objetivo, neste caso, é encontrar um conjunto de variáveis capaz de capturar a dinâmica da série de interesse no mesmo período em que esta ocorre.

Entretanto, este conjunto pode envolver um número arbitrariamente grande de variáveis: dezenas, centenas ou até milhares. Se o número de variáveis for superior ao número de observações, não é possível estimar coeficientes em modelos paramétricos tradicionais (OLS, por exemplo). Por outro lado, mesmo que seja possível estimar os coeficientes, não é apropriado introduzir um número muito elevado de variáveis nos modelos: isto pode gerar overfitting, o que tende a produzir previsões bastante imprecisas.

Uma solução comumente adotada é utilizar um modelo com fatores. Mais especificamente, um fator busca reduzir o conjunto de informações (variáveis) a uma fonte de variação comum entre elas. Em geral, essa fonte de variação comum é não-observável. A ideia, portanto, é utilizar um conjunto de variáveis relacionadas a essa fonte e, ao extrair o componente de variação comum entre elas, obter uma aproximação desta fonte não-observável.

Para ficar mais claro, imagine que estejamos interessados em acompanhar em "tempo real" a evolução da atividade econômica. Sabemos que uma série de variáveis são afetados ou afetam a atividade econômica, embora em direções e magnitudes possivelmente distintas. Por exemplo, a utilização de energia elétrica, a produção da indústria, a confiança dos consumidores, etc. Ao extrair o componente de variação comum entre estas variáveis, poderíamos ter uma medida (indireta) da atividade econômica. E se tivermos estas informações disponíveis no instante t, poderemos ter informação sobre a atividade econômica também em t -- um Nowcast.

Estimulado por essa ideia, o exercício busca realizar um Nowcast do PIB. O IBGE divulga os resultados do PIB cerca de 2 meses depois do fim de cada trimestre. Porém, uma variedade de informações sobre a atividade torna-se disponível no decorrer do próprio trimestre. É possível, então, reunir essas informações, extrair fatores e obter previsões. De início, serão utilizadas apenas 10 variáveis: medidas de inflação, atividade da indústria e confiança dos agentes. Após realizar o tratamento nos dados, serão construídos os fatores através de Componentes Principais (PCA). Em seguida, será ajustado um modelo OLS com a série de PIB como variável dependente e os quatro primeiros fatores como covariáveis.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O papel da credibilidade do Banco Central na desinflação da economia

O objetivo deste trabalho é mensurar a credibilidade da política monetária brasileira através de diferentes métricas e verificar empiricamente se uma maior credibilidade contribui para a redução da inflação. Realizamos a modelagem econométrica usando o pacote {systemfit} disponível na linguagem. Ao fim, criamos um relatório reprodutível com a combinação Quarto + R.

Análise de Criptomoedas com Python

Aprenda a estruturar um pipeline de dados financeiros com Python. Ensinamos a construção de um dashboard automatizado para coleta, tratamento e visualização de criptomoedas via API.

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.