Nowcasting do PIB: um modelo de fatores

A edição 57 do Clube do Código aborda o tema de nowcasting. Em termos bem gerais, nowcasting é a previsão do presente -- ou do futuro/passado muito recente. O objetivo, neste caso, é encontrar um conjunto de variáveis capaz de capturar a dinâmica da série de interesse no mesmo período em que esta ocorre.

Entretanto, este conjunto pode envolver um número arbitrariamente grande de variáveis: dezenas, centenas ou até milhares. Se o número de variáveis for superior ao número de observações, não é possível estimar coeficientes em modelos paramétricos tradicionais (OLS, por exemplo). Por outro lado, mesmo que seja possível estimar os coeficientes, não é apropriado introduzir um número muito elevado de variáveis nos modelos: isto pode gerar overfitting, o que tende a produzir previsões bastante imprecisas.

Uma solução comumente adotada é utilizar um modelo com fatores. Mais especificamente, um fator busca reduzir o conjunto de informações (variáveis) a uma fonte de variação comum entre elas. Em geral, essa fonte de variação comum é não-observável. A ideia, portanto, é utilizar um conjunto de variáveis relacionadas a essa fonte e, ao extrair o componente de variação comum entre elas, obter uma aproximação desta fonte não-observável.

Para ficar mais claro, imagine que estejamos interessados em acompanhar em "tempo real" a evolução da atividade econômica. Sabemos que uma série de variáveis são afetados ou afetam a atividade econômica, embora em direções e magnitudes possivelmente distintas. Por exemplo, a utilização de energia elétrica, a produção da indústria, a confiança dos consumidores, etc. Ao extrair o componente de variação comum entre estas variáveis, poderíamos ter uma medida (indireta) da atividade econômica. E se tivermos estas informações disponíveis no instante t, poderemos ter informação sobre a atividade econômica também em t -- um Nowcast.

Estimulado por essa ideia, o exercício busca realizar um Nowcast do PIB. O IBGE divulga os resultados do PIB cerca de 2 meses depois do fim de cada trimestre. Porém, uma variedade de informações sobre a atividade torna-se disponível no decorrer do próprio trimestre. É possível, então, reunir essas informações, extrair fatores e obter previsões. De início, serão utilizadas apenas 10 variáveis: medidas de inflação, atividade da indústria e confiança dos agentes. Após realizar o tratamento nos dados, serão construídos os fatores através de Componentes Principais (PCA). Em seguida, será ajustado um modelo OLS com a série de PIB como variável dependente e os quatro primeiros fatores como covariáveis.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como avaliar modelos de IA na previsão macroeconômica?

Descubra como economistas e cientistas de dados estão combinando econometria e inteligência artificial para aprimorar previsões macroeconômicas. Neste post, você vai entender as principais etapas de avaliação de modelos — da preparação dos dados à validação cruzada — e conhecer as métricas e técnicas que revelam quais métodos realmente entregam as melhores previsões. Uma leitura essencial para quem quer compreender o futuro da análise econômica orientada por dados.

Análise exploratória e seleção de séries temporais econômicas para modelagem

Quer entender como transformar dados econômicos brutos em previsões macroeconômicas precisas? Neste post, mostramos passo a passo como realizar a análise exploratória e seleção de séries temporais com Python — desde o tratamento de dados e remoção de multicolinearidade até a escolha das variáveis mais relevantes usando técnicas de machine learning e econometria. Um guia essencial para quem quer unir teoria econômica e inteligência artificial na prática da previsão macroeconômica.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.