Dados históricos de pib per capita com o pacote maddison

Em uma noite de insônia, navegando pelo meu feed no facebook, acabei vendo um post do professor Carlos Eduardo Gonçalves com um gráfico de renda per capita fazendo referência ao projeto Maddison; que tem o ousado objetivo de estimar essa variável para todos os países do mundo desde os anos mais remotos. Acabei fazendo o que todo R Lover faria: dei um google para ver se tinha um pacote para o projeto. E, claro, tinha...

Acabei, então, dando uma vasculhada no dataset e escrevi algumas linhas de código, após comer um sanduíche... 🙂


library(maddison)
library(ggplot2)
library(scales)
library(png)
library(grid)

script começa carregando - depois de ter instalado o mesmo, obviamente - o pacote maddison. Depois carreguei o pacote ggplot2 e alguns pacotes acessórios a ele, para produzir um gráfico mais bonitinho... Antes, claro, como o dataset é imenso - tem 45.318 observações para 9 variáveis - eu fiz um subset do que eu estava interessado para poder montar um gráfico...


df = subset(maddison, year>='1870-01-01' &
iso2c %in% c('BR', 'US', 'CL', 'JP', 'KR'))

Com o código acima, eu peguei os dados do pib per capita para Brasil, Estados Unidos, Chile, Japão e Coréia do Sul desde 1870, quando os primeiros dados para o Brasil estavam disponíveis. Com esses dados, construí o gráfico abaixo.

Algumas coisas me chamaram atenção nesse gráfico. Observe que tínhamos em 1870 a mesma renda per capita do Japão, que nos deixou para trás. Em 1980, tínhamos a mesma renda da Coreia do Sul, que também nos deixou para trás. Nesses 30 anos, diga-se, o Chile nos deu um banho de crescimento. E os EUA mantém uma linha praticamente linear de crescimento.

Fico pensando até quando o Brasil vai ficar para trás... Mas, isso já é um outro tema...

Caso queira receber o código do gráfico acima, rola a barrinha à direita e coloca seu e-mail na nossa newsletter! Na próxima segunda-feira, vou enviar algumas coisas bem legais para a lista!

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Análise de impacto fiscal sobre o dolár com Python

Usamos uma cesta de 12 moedas para construir um cenário contrafactual da taxa de câmbio após o último anúncio de pacote fiscal, com base em modelagem Bayesiana. No período, o dolár depreciou quase 5% e passou os R$ 6,15, enquanto que na ausência da intervenção a moeda deveria estar cotada em R$ 5,78.

Resultado IBC-br - Outubro/2024

A Análise Macro apresenta os resultados da IBC-br de Outubro de 2024, com gráficos elaborados em Python para coleta, tratamento e visualização de dados. Todo o conteúdo, disponível exclusivamente no Clube AM, foi desenvolvido com base nos métodos ensinados nos cursos da Análise Macro, permitindo aos assinantes acesso aos códigos e replicação das análises.

Resultado PMC - Outubro/2024

A Análise Macro apresenta os resultados da PMC de Outubro de 2024, com gráficos elaborados em Python para coleta, tratamento e visualização de dados. Todo o conteúdo, disponível exclusivamente no Clube AM, foi desenvolvido com base nos métodos ensinados nos cursos da Análise Macro, permitindo aos assinantes acesso aos códigos e replicação das análises.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.