Qual a relação entre o Ibovespa e a Taxa de Câmbio?

Em dia de caos na Argentina, que sofre os efeitos da derrota de Macri nas prévias das eleições, a economia brasileira não saiu impune ontem. O Índice Ibovespa caiu 2% e a taxa de câmbio flertou novamente com os 4 R$/US$. Diante disso, resolvi dar uma olhada na relação entre essas duas variáveis ao longo do tempo, usando o R - aprenda a usar o R em nossos Cursos Aplicados. Abaixo, carregamos alguns pacotes.


library(quantmod)
library(ggplot2)
library(ggalt)

E assim podemos pegar os dados do yahoo finance com uma função do pacote quantmod.


getSymbols("BRL=X",src="yahoo")
getSymbols("^BVSP",src="yahoo")

Um pequeno tratamento é feito abaixo.


cambio = `BRL=X`[,4]
ibov = BVSP[,4]
data = cbind(cambio, ibov)
data = data[complete.cases(data)]
colnames(data) = c('cambio', 'ibov')

E assim, estamos prontos para plotar um gráfico.


ggplot(data, aes(cambio, ibov))+
geom_point()

Caso o leitor se interesse, verá que a correlação entre as séries é positiva, para uma amostra de dados diários, entre janeiro de 2007 e agosto de 2019. Mas o gráfico mostra clusters onde a correlação entre as séries parece ser negativa. Nós podemos destacar essas aglomerações com o pacote ggalt e dentro delas, verificar o ajuste. Antes de mais nada, nós selecionamos três clusters como abaixo.


data_select = data[data$cambio > 1.5 & data$cambio < 2.5 &
data$ibov > 33000 & data$ibov < 69000,]

data_select2 = data[data$cambio > 3 & data$cambio < 4.2 &
data$ibov > 31000 & data$ibov < 69000,]

data_select3 = data[data$cambio > 3.6 & data$cambio < 4.2 &
data$ibov > 75000 & data$ibov < 100000,]

E assim, podemos construir o código do gráfico.


ggplot(data, aes(cambio, ibov))+
geom_point(size=.6, colour='black')+
geom_encircle(aes(x=cambio, y=ibov),
data=data_select,
color="red",
size=2,
expand=0.08)+
geom_smooth(aes(x=cambio, y=ibov),
data=data_select,
method='lm',
colour='#8abbd0',
size=1.5)+
geom_encircle(aes(x=cambio, y=ibov),
data=data_select2,
color="orange",
size=2,
expand=0.08)+
geom_smooth(aes(x=cambio, y=ibov),
data=data_select2,
method='lm',
colour='#8abbd0',
size=1.5)+
geom_encircle(aes(x=cambio, y=ibov),
data=data_select3,
color="blue",
size=2,
expand=0.08)+
geom_smooth(aes(x=cambio, y=ibov),
data=data_select3,
method='auto',
colour='#8abbd0',
size=1.5,
se=FALSE)+
labs(x='BRL/USD', y='Ibovespa',
title='Taxa de Câmbio vs. Ibovespa',
subtitle='Dados Diários: janeiro de 2007 a agosto de 2019',
caption='Fonte: analisemacro.com.br com dados do Yahoo Finance')

E aí está...

Para a nossa amostra completa, como dito, a correlação é positiva, mas dentro dos nossos clusters a correlação é negativa, como destacado no gráfico.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Qual a relação entre benefícios sociais e a taxa de participação do mercado de trabalho?

Este exercício apresenta uma investigação econométrica sobre a persistente estagnação da taxa de participação no mercado de trabalho brasileiro no período pós-pandemia. Utilizando a linguagem R e dados públicos do IBGE e Banco Central, construímos um modelo de regressão linear múltipla com correção de erros robustos (Newey-West). A análise testa a hipótese de que o aumento real das transferências de renda (Bolsa Família/Auxílio Brasil) elevou o salário de reserva, desincentivando o retorno à força de trabalho.

Estamos em pleno emprego no mercado de trabalho?

Este artigo investiga se o mercado de trabalho brasileiro atingiu o nível de pleno emprego, utilizando uma estimativa da NAIRU (Non-Accelerating Inflation Rate of Unemployment) baseada na metodologia de Ball e Mankiw (1997). Através de uma modelagem em Python que unifica dados históricos da PME e PNAD Contínua com as expectativas do Boletim Focus, comparamos a taxa de desocupação corrente com a taxa neutra estrutural. A análise visual e quantitativa sugere o fechamento do hiato de desemprego, sinalizando potenciais pressões inflacionárias. O texto detalha o tratamento de dados, a aplicação do Filtro Hodrick-Prescott e discute as vantagens e limitações da metodologia econométrica adotada.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.