Como calcular o juro real ex-ante usando o R

Ontem, o jornal Valor Econômico deu destaque para o fato do juro real ex-ante ter atingido a marca histórica de 1,37% a.a., o menor patamar da série, ao se considerar a série suavizada de expectativa de inflação do Banco Central. Vou falar um pouquinho sobre o impacto disso na economia brasileira. Mas antes, cumprindo a missão do Blog, vou ensinar a fazer a conta no R. Primeiro, vamos carregar alguns pacotes.


library(GetTDData)
library(readr)
library(xts)
library(forecast)
library(scales)
library(ggplot2)
library(mFilter)
library(grid)
library(png)
library(rbcb)

Pacotes carregados, você precisará pegar a série 7806 lá no site do Banco Central, que é o swap DI 360 diário. De posse do arquivo csv, você pode importá-lo como abaixo.


## Swap DI 360
swap = read_csv2('swap.csv',
col_types = list(col_date(format='%d/%m/%Y'),
col_double()))

Com o juro do swap em mãos, você pode agora pegar a série de expectativa de inflação com o pacote rbcb, como abaixo.


## Expectativa de Inflação 12 meses à frente
expinf = get_twelve_months_inflation_expectations('IPCA',
start_date = '2012-06-01')

Observe que eu peguei a expectativa de inflação 12 meses à frente. No tibble importado, entretanto, vem uma série de informações. Nós queremos apenas a média da série suavizada. Com o código abaixo, nós tratamos os nossos dados para termos exatamente o que queremos.


swap = xts(swap$swap, order.by = swap$date)
expinf12 = xts(expinf$mean[expinf$smoothed=='S'],
order.by = expinf$date[expinf$smoothed=='S'])
dataex = cbind(swap, expinf12)
dataex = dataex[complete.cases(dataex),]

Temos agora um objeto xts com as nossas duas séries devidamente tratadas. Tudo isso feito, podemos aplicar a seguinte fórmula aos nossos dados:

(1)   \begin{equation*}(1+r_{t+1}) = (1+i_t)/(1+E_t\pi_{t+1}) \end{equation*}

O código abaixo implementa.


juro_ex = (((1+(dataex[,1]/100))/(1+(dataex[,2]/100)))-1)*100

E a seguir um gráfico rápido...

Como se pode ver no gráfico, nós de fato já alcançamos esse patamar de juros lá no final de 2012. Mas, como a História iria mostrar, não era um nível sustentável, dado que foi alcançado na marra, via imposição do governo Dilma Rousseff. Já aqui, o enredo é completamente distinto. Principalmente porque a inflação efetiva está controlada, deve encerrar 2019 abaixo da meta, refletindo o bom trabalho do Banco Central. Isso leva a termos expectativas de inflação ancoradas, cenário bastante distinto do final de 2012.

De modo a comparar, veja o que está acontecendo com os títulos públicos brasileiros, tomando como exemplo a NTN-B com vencimento em 2050.

yield do título alcançou o valor de 3,57% na ponta, o mínimo histórico. Tanto um quanto o outro refletem a queda da taxa básica de juros, em um cenário de expectativas de inflação ancoradas, grave ociosidade da economia e um amplo conjunto de reformas que estão sendo feitas no país.

O juro da NTN-B 2050, diga-se, é uma espécie de proxy para o que os economistas chamam de juro neutro ou juro de equilíbrio. Nesses termos, como tem apontado outros estudos sobre o tema, é possível que o nosso juro de equilíbrio tenha caído nos últimos anos, em função do conjunto de reformas que foi feito no país. Em particular, a estipulação do teto de gastos, a mudança na taxa de juros que serve de base para os empréstimos do BNDES e agora com a reforma da previdência.

O fato, portanto, do juro real ex-ante estar próximo a 1,37% na ponta indica que a política monetária está em posição expansionista, mesmo considerando uma queda expressiva do juro de equilíbrio da economia. Se vai ter efeito sobre a economia, aí já são outros quinhentos...

_____________________________

O código completo do exercício estará disponível mais tarde no repositório do Clube do Código.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Tratamento e transformação de séries temporais macroeconômicas para modelagem

"Garbage in, garbage out" é a regra de ouro na previsão macroeconômica. Antes de aplicar qualquer modelo de IA ou econometria para prever indicadores como o IPCA ou o PIB, existe um trabalho crucial de tratamento de dados. Neste post, abrimos os bastidores do nosso dashboard de previsões e mostramos o passo a passo para transformar dados brutos de múltiplas fontes (como BCB, IBGE e FRED) em séries prontas para modelagem. Veja como lidamos com diferentes frequências, aplicamos transformações e usamos metadados para criar um pipeline de dados robusto e automatizado.

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.