Inflação está próxima ao piso do regime de metas

O Brasil opera desde 1999 o regime de metas para inflação - conhecido no mundo como Inflation Target -, donde o objetivo explícito do Banco Central é conduzir a política monetária de modo a manter a inflação próxima a uma meta previamente estabelecida pelo Conselho Monetário Nacional. Nesse regime, há uma meta explícita e bandas de tolerânciaque servem para acomodar choques diversos que ocorrem sobre a inflação ao longo do tempo. De modo a ilustrar a operação do regime de metas no Brasil, podemos construir um gráfico com a inflação, os núcleos de inflação, a meta e as bandas de tolerância.

O gráfico acima mostra todas essas variáveis e o último dado disponível para a inflação cheia, que fechou em 2,89% no acumulado em 12 meses até setembro. O piso da meta é de 2,75%, considerando 1,5 pontos percentuais de tolerância para mais ou menos em torno da meta de 4,25% para esse ano. Como se pode ver no gráfico, a inflação cheia flerta nesse momento com o piso do regime de metas.

O caminho para uma taxa básica nominal de juros de 4,5% no final do ano está aberto. Na verdade, não é mais nem um caminho: é uma avenida!

______________________

(*) O código para o gráfico estará disponível logo mais no Clube do Código.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como choques inflacionários afetam a previsão da Selic?

Como mensurar a importância de choques na inflação sobre o erro de previsão da taxa de juros? Neste exercício quantificamos esta pergunta sob a ótica de um modelo VAR, usando dados recentes da macroeconomia brasileira. Especificamente, estimamos a decomposição da variância dos erros de previsão do modelo, analisando choques na inflação da gasolina e sua importância sobre a variância dos erros de previsão da taxa Selic.

Modelo de previsão para o preço da gasolina

Neste exercício exploramos os dados públicos sobre o preço da gasolina no Brasil, sua composição, evolução temporal, políticas associadas e, por fim, construímos um modelo simples de previsão. Com um modelo em mãos, o analista pode cenarizar o comportamento futuro da série da forma como preferir. Todos os procedimentos foram feitos usando a linguagem de programação Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.