Desemprego fica no limite inferior das projeções

A taxa de desemprego medida pela PNAD Contínua ficou em 11,2% em novembro. A projeção, com base em um modelo VEC era de desemprego entre 11,2% e 11,5%, com previsão média de 11,4%. Em palavras outras, o resultado acabou surpreendendo positivamente.

Com o resultado de novembro, nós atualizamos o nosso modelo VEC cuja metodologia está detalhada na Edição 68 do Clube do Código. O gráfico acima ilustra a trajetória projetada para a taxa de desemprego nos próximos seis meses. Como de praxe, o modelo ilustra uma queda em dezembro e depois uma alta até abril. O desemprego volta, então, a cair a partir de maio. A tabela a seguir ilustra o comportamento projetado.

Previsões para a Taxa de Desemprego
Lower Média Upper
Dez/19 10.4 10.5 10.6
Jan/20 10.7 10.9 11.2
Fev/20 11.4 11.7 12.1
Mar/20 12.0 12.5 13.0
Abr/20 11.9 12.5 13.2
Mai/20 11.3 12.1 12.8

Isto é, espera-se agora uma queda mais forte do desemprego do que antecipado até outubro. A conferir!

_______________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Econometria, ML ou IA para previsão da PMS?

Prever a Pesquisa Mensal de Serviços (PMS/IBGE) é um desafio por natureza: trata-se de uma série mensal, sujeita a volatilidade e choques que vão de fatores sazonais a mudanças estruturais no setor. Para enfrentar esse problema, realizamos um exercício de comparação entre três abordagens de modelagem: econometria tradicional (ARIMA), machine learning (XGBoost) e inteligência artificial (TimeGPT).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.