Usando um VECM para projetar o Desemprego no Brasil

A semana termina aqui na Análise Macro com mais uma edição do Clube do Código. Estará disponível no próximo domingo a Edição 68 do Clube, titulada Usando um VECM para projetar o Desemprego no Brasil. Ao longo da semana, os leitores desse espaço acompanharam tanto no Comentário de Conjuntura quanto na divulgação de indicadores feita hoje, uma preocupação com a projeção da taxa de desemprego. Na mais nova edição do Clube, detalhamos mais um modelo de previsão para a taxa de desemprego, utilizando um Vetor de Correção de Erros. O novo modelo de previsão para a taxa de desemprego utiliza pesquisas do Google, seguindo o paper "The predictive power of google search in forecasting US unemployment".

Acima temos um gráfico com as projeções da taxa de desemprego nos próximos seis meses. Abaixo, uma tabela com as previsões geradas pelo modelo.

Previsões para a Taxa de Desemprego
Lower Média Upper
Nov/19 11.2 11.4 11.5
Dez/19 11.0 11.2 11.4
Jan/20 11.1 11.4 11.8
Fev/20 11.3 11.8 12.3
Mar/20 11.5 12.1 12.8
Abr/20 11.1 11.9 12.7

O modelo utiliza as seguintes variáveis: (i) índice coincidente de desemprego da FGV; (ii) índice antecedente de emprego da FGV; (iii) índice de incerteza econômica da FGV; (iv) pesquisas no Google pela palavra 'emprego'; (v) IBC-BR; (vi) taxa de juros Selic.

Na Edição 68 do Clube do Código estão detalhados todos os códigos utilizados no exercício.

_________________________

Quer aprender a construir modelos de séries temporais? Veja nosso Curso de Séries Temporais usando o R.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é um Vector Database e como criar um com LangChain

Nesta postagem, mostramos como construir um pipeline simples de RAG (Retrieval-Augmented Generation) usando o LangChain, o modelo Gemini 2.0 Flash e o Vector Database Chroma. Utilizamos como exemplo o Relatório de Inflação de junho de 2025 do Banco Central do Brasil. O fluxo envolve o download e leitura do PDF, divisão do texto com RecursiveCharacterTextSplitter, geração de embeddings com Gemini, armazenamento vetorial com Chroma e busca semântica para responder perguntas com base no conteúdo do relatório. É uma aplicação prática e didática para economistas que desejam integrar IA ao seu fluxo de análise.

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Análise de Dados com REPL Tool e LLM usando LangGraph

Neste post, vamos mostrar como você pode criar um agente que interpreta e executa código Python em tempo real, utilizando o REPL-Tool e um LLM da família Gemini. Começamos com um exemplo genérico e, em seguida, aplicamos a mesma estrutura à análise econômica de uma série histórica do IPCA.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.