Dados do Payroll norte-americano com o R

Hoje o U.S. Bureau of Labor Statistics divulgou o dado do nonfarm payroll, ou seja, a quantidade de postos de trabalho não agrícolas criadas/destruídas ao longo do mês. O resultado para março foi de uma queda de 701 mil postos de trabalho. Uma destruição de postos de trabalho muito mais rápida do que a que houve em 2008.

Para visualizar os dados do payroll, podemos usar o pacote quantmod como no código abaixo.


library(quantmod)
library(ggplot2)
library(gridExtra)
library(dplyr)
library(magrittr)
library(scales)

getSymbols('PAYEMS', src='FRED')
data = tibble(date=as.Date(time(PAYEMS)),
payroll=PAYEMS) %>%
mutate(variacao = payroll - lag(payroll,1))

filter(data, date > '2000-01-01') %>%
ggplot(aes(x=date, y=variacao))+
geom_line(size=.8)+
geom_hline(yintercept=0, colour='red', linetype='dashed')+
scale_x_date(breaks = date_breaks("1 year"),
labels = date_format("%Y"))+
theme(axis.text.x=element_text(angle=45, hjust=1),
plot.title = element_text(size=12))+
labs(x='', y='Mil pessoas',
title='Variação mensal de postos de trabalho não-agrícolas nos Estados Unidos',
caption='FOnte: FRED Economic Data (quantmod R Package)')

(*) Isso e muito mais você aprende em nossos Cursos Aplicados de R.

___________


Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Qual a relação entre benefícios sociais e a taxa de participação do mercado de trabalho?

Este exercício apresenta uma investigação econométrica sobre a persistente estagnação da taxa de participação no mercado de trabalho brasileiro no período pós-pandemia. Utilizando a linguagem R e dados públicos do IBGE e Banco Central, construímos um modelo de regressão linear múltipla com correção de erros robustos (Newey-West). A análise testa a hipótese de que o aumento real das transferências de renda (Bolsa Família/Auxílio Brasil) elevou o salário de reserva, desincentivando o retorno à força de trabalho.

Estamos em pleno emprego no mercado de trabalho?

Este artigo investiga se o mercado de trabalho brasileiro atingiu o nível de pleno emprego, utilizando uma estimativa da NAIRU (Non-Accelerating Inflation Rate of Unemployment) baseada na metodologia de Ball e Mankiw (1997). Através de uma modelagem em Python que unifica dados históricos da PME e PNAD Contínua com as expectativas do Boletim Focus, comparamos a taxa de desocupação corrente com a taxa neutra estrutural. A análise visual e quantitativa sugere o fechamento do hiato de desemprego, sinalizando potenciais pressões inflacionárias. O texto detalha o tratamento de dados, a aplicação do Filtro Hodrick-Prescott e discute as vantagens e limitações da metodologia econométrica adotada.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.