Transformando preços em log-retornos mensais com o R tidyquant

No post anterior, eu mostrei como é possível coletar os preços de ações com o R através do pacote quantmod, utilizando a base de dados do Yahoo Finance. Essa representação dos dados, contudo, não é a mais conveniente para a gestão de portfólios, como veremos no nosso Novo Curso Mercado Financeiro e Gestão de Portfólios. Para fins de construção de portfólios, é conveniente usarmos os retornos ou log-retornos dos ativos. De fato, uma grande parte dos estudos financeiros envolve retorno, ao invés de preço, de ativos. Isto porque, retorno de ativos pode ser um completo sumário para oportunidades de investimento, bem como séries de retorno são mais fáceis de lidar do que séries de preço porque aquelas possuem propriedades estatísticas mais atrativas.

Há, entretanto, diversas definições de retorno de ativos. Tomando P_t como o preço de um ativo no tempo t, considerando que a princípio o ativo não paga dividendos, ao manter um ativo por um período de t-1 a t, isso resultaria em um retorno bruto simples de

(1)   \begin{align*} 1 + R_t = \frac{P_t}{P_{t-1}} \end{align*}

O retorno líquido ou simples então será de

(2)   \begin{align*} R_t = \frac{P_t}{P_{t-1}} - 1 = \frac{P_t - P_{t-1}}{P_{t-1}} \end{align*}

Já o logaritmo natural do retorno bruto simples de um ativo é chamado de retorno composto continuamente ou simplesmente log-retorno:

(3)   \begin{align*} r_t = \text{ln} (1+R_t) = \text{ln} \frac{P_t}{P_{t-1}} = p_t - p_{t-1} \end{align*}

onde p_t = ln (P_t).  A seguir, pegamos nossas ações coletadas no post anterior e calculamos os log-retornos mensais com o pacote tidyquant.


library(tidyverse)
library(tidyquant)
library(timetk)
library(scales)
library(quantmod)

prices = getSymbols(symbols, src='yahoo',
from='2019-01-01',
to='2020-04-20',
warning=FALSE) %>%
map(~Cl(get(.))) %>%
reduce(merge) %>%
`colnames<-` (symbols) %>%
tk_tbl(preserve_index = TRUE,
rename_index = 'date') %>%
drop_na()

returns = prices %>%
gather(asset, prices, -date) %>%
group_by(asset) %>%
tq_transmute(mutate_fun = periodReturn,
period='monthly',
type='log') %>%
spread(asset, monthly.returns) %>%
select(date, symbols)

A seguir, construímos um gráfico desses retornos.


ggplot(returns, aes(x=date))+
geom_line(aes(y=PETR4.SA, colour='PETR4'))+
geom_line(aes(y=ABEV3.SA, colour='ABEV3'))+
geom_line(aes(y=MGLU3.SA, colour='MGLU3'))+
geom_line(aes(y=VVAR3.SA, colour='VVAR3'))+
scale_colour_manual('',
values=c('PETR4'='blue',
'ABEV3'='red',
'MGLU3'='orange',
'VVAR3'='green'))+
scale_x_date(breaks = date_breaks("1 month"),
labels = date_format("%b/%Y"))+
theme(axis.text.x=element_text(angle=45, hjust=1),
legend.position = 'bottom',
plot.title = element_text(size=10, face='bold'))+
labs(x='', y='',
title='Log-Retornos mensais de ações brasileiras selecionadas',
caption='Fonte: analisemacro.com.br com dados do Yahoo Finance')

Observa-se uma queda forte no mês de março por conta da pandemia do coronavírus, como era esperado.

(*) Isso e muito mais você irá aprender no nosso Novo Curso Mercado Financeiro e Gestão de Portfólios.


Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Estamos em pleno emprego no mercado de trabalho?

Este artigo investiga se o mercado de trabalho brasileiro atingiu o nível de pleno emprego, utilizando uma estimativa da NAIRU (Non-Accelerating Inflation Rate of Unemployment) baseada na metodologia de Ball e Mankiw (1997). Através de uma modelagem em Python que unifica dados históricos da PME e PNAD Contínua com as expectativas do Boletim Focus, comparamos a taxa de desocupação corrente com a taxa neutra estrutural. A análise visual e quantitativa sugere o fechamento do hiato de desemprego, sinalizando potenciais pressões inflacionárias. O texto detalha o tratamento de dados, a aplicação do Filtro Hodrick-Prescott e discute as vantagens e limitações da metodologia econométrica adotada.

Como se comportou a Taxa de Participação no Brasil nos últimos anos? Uma Análise com a Linguagem R

O objetivo deste estudo é analisar a evolução da Taxa de Participação no Brasil, contrastando-a com a Taxa de Desocupação e decompondo suas variações para entender os vetores (populacionais e de força de trabalho) que influenciam o comportamento atual do mercado de trabalho. Para isso, utilizamos a linguagem R em todo o processo, desde a coleta e o tratamento das informações até a visualização dos resultados, empregando os principais pacotes disponíveis no ecossistema da linguagem.

Como se comportou a inflação de serviços no Brasil nos últimos anos?

Uma análise econométrica da inflação de serviços no Brasil comparando os cenários de 2014 e 2025. Utilizando uma Curva de Phillips própria e estimativas da NAIRU via filtro HP, investigamos se o atual desemprego nas mínimas históricas repete os riscos do passado. Entenda como as expectativas de inflação e o hiato do desemprego explicam o comportamento mais benigno dos preços atuais em relação à década anterior.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.