Desemprego segue subestimado no Brasil

No nosso Curso de Análise de Conjuntura usando o R, ensino os alunos a analisar os dados da Pesquisa Nacional por Amostra de Domicílios Contínua (PNAD Contínua), que traz diversos dados sobre o mercado de trabalho brasileiro. A análise desses dados dá uma dimensão interessante sobre os efeitos da pandemia do Covid-19. Para ilustrar, vamos olhar alguns dados agregados nesse Comentário de Conjuntura.

O script, como de hábito, começa com alguns pacotes...


## Pacotes utilizados nessa apresentação
library(tidyverse)
library(lubridate)
library(sidrar)
library(zoo)
library(scales)
library(timetk)
library(knitr)

Uma vez que os pacotes estejam carregados, eu posso pegar alguns dados agregados da PNAD, como no código abaixo.


populacao = get_sidra(api='/t/6022/n1/all/v/606/p/all') %>%
mutate(date = parse_date(`Trimestre Móvel (Código)`,
format='%Y%m')) %>%
select(date, Valor) %>%
as_tibble()

names = c("date", 'pnea', 'pea', 'desocupada', 'ocupada', 'pia')
condicao = get_sidra(api='/t/6318/n1/all/v/1641/p/all/c629/all') %>%
mutate(date = parse_date(`Trimestre Móvel (Código)`,
format='%Y%m')) %>%
select(date, "Condição em relação à força de trabalho e condição de ocupação", Valor) %>%
spread("Condição em relação à força de trabalho e condição de ocupação", Valor) %>%
`colnames<-`(names) %>%
as_tibble()

Com o código acima, eu pego dados de duas tabelas, a 6022 e 6318. Assim, consigo criar as variáveis que eu mais quero, que são a taxa de desemprego e a taxa de participação com o código a seguir.


agregado_pnad = inner_join(populacao, condicao, by='date') %>%
rename(populacao = Valor) %>%
mutate(inativos = populacao - pia,
desemprego = desocupada/pea*100,
participacao = pea/pia*100) %>%
select(date, populacao, inativos, pia, pea, pnea, ocupada, desocupada,
desemprego, participacao)

Uma vez que os dados estejam disponíveis, posso visualizá-los como abaixo.

Observe que o desemprego se aproxima dos 14% da PEA (População Economicamente Ativa). Porém, isso se dá com uma taxa de participação (PEA sobre a PIA) bastante reduzida por conta da pandemia do Covid-19. Em palavras outras, com o fim do auxílio emergencial e também com a proximidade da vacina e/ou da imunidade de rebanho na maioria das capitais, espera-se que o desemprego dê um salto ainda maior nos próximos meses.

________________

(*) Para ter acesso aos códigos completos de nossos futuros exercícios, cadastre-se na nossa Lista VIP aqui.

(**) As inscrições para as Turmas de Verão começam no próximo dia 27/10. Para ser avisado por e-mail, cadastre-se aqui.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando um dashboard das previsões do Relatório Focus

O Relatório Focus, divulgado semanalmente pelo Banco Central, reúne as expectativas do mercado para variáveis-chave da economia brasileira, como inflação, câmbio, PIB e Selic. Neste projeto, transformamos esses dados em um dashboard interativo para acompanhar a acurácia das previsões ao longo do tempo.

Como usar Modelos de Linguagem no R com o pacote {elmer}

Na análise de dados contemporânea, o uso de Modelos de Linguagem (LLMs) vem se consolidando como uma ferramenta poderosa para automatizar e aprimorar tarefas analíticas. Ao integrarmos LLMs a pacotes como o ellmer, podemos ampliar nossas capacidades de extração, interpretação e automação de dados no ambiente R. Neste post, exploramos o papel desses modelos e detalhamos como o ellmer opera dentro do universo da linguagem de programação R.

Introdução ao AutoGen: Agentes Inteligentes na Análise Financeira

O AutoGen é um framework da Microsoft que permite criar agentes de IA colaborativos. Na área financeira, pode automatizar a coleta de dados, cálculos de indicadores e geração de relatórios. Este artigo apresenta os conceitos básicos e um exemplo aplicado a ações de empresas.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.