Desemprego segue subestimado no Brasil

No nosso Curso de Análise de Conjuntura usando o R, ensino os alunos a analisar os dados da Pesquisa Nacional por Amostra de Domicílios Contínua (PNAD Contínua), que traz diversos dados sobre o mercado de trabalho brasileiro. A análise desses dados dá uma dimensão interessante sobre os efeitos da pandemia do Covid-19. Para ilustrar, vamos olhar alguns dados agregados nesse Comentário de Conjuntura.

O script, como de hábito, começa com alguns pacotes...


## Pacotes utilizados nessa apresentação
library(tidyverse)
library(lubridate)
library(sidrar)
library(zoo)
library(scales)
library(timetk)
library(knitr)

Uma vez que os pacotes estejam carregados, eu posso pegar alguns dados agregados da PNAD, como no código abaixo.


populacao = get_sidra(api='/t/6022/n1/all/v/606/p/all') %>%
mutate(date = parse_date(`Trimestre Móvel (Código)`,
format='%Y%m')) %>%
select(date, Valor) %>%
as_tibble()

names = c("date", 'pnea', 'pea', 'desocupada', 'ocupada', 'pia')
condicao = get_sidra(api='/t/6318/n1/all/v/1641/p/all/c629/all') %>%
mutate(date = parse_date(`Trimestre Móvel (Código)`,
format='%Y%m')) %>%
select(date, "Condição em relação à força de trabalho e condição de ocupação", Valor) %>%
spread("Condição em relação à força de trabalho e condição de ocupação", Valor) %>%
`colnames<-`(names) %>%
as_tibble()

Com o código acima, eu pego dados de duas tabelas, a 6022 e 6318. Assim, consigo criar as variáveis que eu mais quero, que são a taxa de desemprego e a taxa de participação com o código a seguir.


agregado_pnad = inner_join(populacao, condicao, by='date') %>%
rename(populacao = Valor) %>%
mutate(inativos = populacao - pia,
desemprego = desocupada/pea*100,
participacao = pea/pia*100) %>%
select(date, populacao, inativos, pia, pea, pnea, ocupada, desocupada,
desemprego, participacao)

Uma vez que os dados estejam disponíveis, posso visualizá-los como abaixo.

Observe que o desemprego se aproxima dos 14% da PEA (População Economicamente Ativa). Porém, isso se dá com uma taxa de participação (PEA sobre a PIA) bastante reduzida por conta da pandemia do Covid-19. Em palavras outras, com o fim do auxílio emergencial e também com a proximidade da vacina e/ou da imunidade de rebanho na maioria das capitais, espera-se que o desemprego dê um salto ainda maior nos próximos meses.

________________

(*) Para ter acesso aos códigos completos de nossos futuros exercícios, cadastre-se na nossa Lista VIP aqui.

(**) As inscrições para as Turmas de Verão começam no próximo dia 27/10. Para ser avisado por e-mail, cadastre-se aqui.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Tratamento e transformação de séries temporais macroeconômicas para modelagem

"Garbage in, garbage out" é a regra de ouro na previsão macroeconômica. Antes de aplicar qualquer modelo de IA ou econometria para prever indicadores como o IPCA ou o PIB, existe um trabalho crucial de tratamento de dados. Neste post, abrimos os bastidores do nosso dashboard de previsões e mostramos o passo a passo para transformar dados brutos de múltiplas fontes (como BCB, IBGE e FRED) em séries prontas para modelagem. Veja como lidamos com diferentes frequências, aplicamos transformações e usamos metadados para criar um pipeline de dados robusto e automatizado.

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.