Volatilidade da taxa de câmbio e o índice VIX

No mês de dezembro, iremos lançar uma nova versão do Clube do Código, que se chamará Clube AM. O projeto de compartilhamento de códigos da Análise Macro vai avançar para uma versão 2.0, que incluirá a existência de um grupo fechado no Whatsapp, de modo a reunir os membros do Novo Clube, compartilhando com eles todos os códigos dos nossos posts feitos aqui no Blog, exercícios de análise de dados de maior fôlego, bem como tirar dúvidas sobre todos os nossos projetos, exercícios e nossos Cursos e Formações.

Para ilustrar o que vamos compartilhar lá nesse novo ambiente, estou publicando nesse espaço alguns dos nossos exercícios de análise de dados. Esses exercícios fazem parte do repositório atual do Clube do Código, que deixará de existir. Além de todos os exercícios existentes no Clube do Código, vamos adicionar novos exercícios e códigos toda semana, mantendo os membros atualizados sobre o que há de mais avançado em análise de dados, econometria, machine learning, forecasting e R.

Hoje, vou mostrar um exercício que fizemos  que buscava relacionar o índice VIX com a volatilidade da taxa de câmbio. Como de praxe, o script começa com alguns pacotes que utilizamos no exercício.


library(BETS)
library(xts)
library(fGarch)
library(scales)
library(quantmod)
library(xts)
library(gridExtra)
library(tidyverse)
library(timetk)

Na sequência, pegamos os dados do câmbio diretamente do site do Banco Central e estimamos a volatilidade da mesma a partir de um modelo GARCH.


cambio = BETSget(1, from='2014-01-01')
cambiod = xts(cambio$value, order.by = cambio$date)
dcambio = diff(log(cambiod))
dcambio = dcambio[complete.cases(dcambio)]
m1=garchFit(~1+garch(1,1),data=dcambio,trace=F)
vol = fBasics::volatility(m1)
vol = xts(vol, order.by = cambio$date[-1])
volatilidade = tk_tbl(vol,
preserve_index = TRUE, rename_index = 'date')

Na sequência, pegamos o índice VIX, utilizando para isso o pacote quantmod. Com as duas séries em mãos, nós podemos juntá-las em um único tibble.


getSymbols('VIXCLS', src='FRED')
vix = tibble(date=as.Date(time(VIXCLS)),
vix = VIXCLS)

data = inner_join(vix, volatilidade, by='date') %>%
drop_na()
colnames(data) = c('date', 'vix', 'volcambio')

De posse dos dados, podemos gerar um gráfico como abaixo.

As séries costumam apresentar alguma correlação positiva. Mas é possível observar na ponta um descolamento das mesmas. Enquanto o VIX está indo para baixo, a volatilidade da taxa de câmbio USD/BRL apresentou uma alta considerável nos últimos dias.

_________________

(*) Cadastre-se aqui na nossa Lista VIP para receber um super desconto na abertura das Turmas 2021.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como se comportou a Taxa de Participação no Brasil nos últimos anos? Uma Análise com a Linguagem R

O objetivo deste estudo é analisar a evolução da Taxa de Participação no Brasil, contrastando-a com a Taxa de Desocupação e decompondo suas variações para entender os vetores (populacionais e de força de trabalho) que influenciam o comportamento atual do mercado de trabalho. Para isso, utilizamos a linguagem R em todo o processo, desde a coleta e o tratamento das informações até a visualização dos resultados, empregando os principais pacotes disponíveis no ecossistema da linguagem.

Como se comportou a inflação de serviços no Brasil nos últimos anos?

Uma análise econométrica da inflação de serviços no Brasil comparando os cenários de 2014 e 2025. Utilizando uma Curva de Phillips própria e estimativas da NAIRU via filtro HP, investigamos se o atual desemprego nas mínimas históricas repete os riscos do passado. Entenda como as expectativas de inflação e o hiato do desemprego explicam o comportamento mais benigno dos preços atuais em relação à década anterior.

Como se comportou o endividamento e a inadimplência nos últimos anos? Uma análise utilizando a linguagem R

Neste exercício realizamos uma análise sobre a inadimplência dos brasileiros no período recente, utilizando a linguagem R para examinar dados públicos do Banco Central e do IBGE. Investigamos a evolução do endividamento, da inadimplência e das concessões de crédito, contextualizando-os com as dinâmicas da política monetária (Taxa Selic) e do mercado de trabalho (renda e desemprego).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.