Análise do desemprego por tempo de procura de trabalho com o R

Os dados da PNAD Contínua, no seu corte trimestral, trazem informações relevantes sobre o tempo de procura por emprego entre as pessoas que estão desempregadas. Essa informação é bastante importante para dar uma dimensão sobre o está o que os economistas chamam de desemprego de longo prazo. A tabela 1616 disponível no SIDRA/IBGE contém essas informações. Para acessá-la, podemos usar o pacote sidrar, como abaixo.


## Pacotes utilizados nesse comentário
library(tidyverse)
library(zoo)

table = get_sidra(api='/t/1616/n1/all/v/4092/p/all/c1965/all') %>%
mutate(date = as.yearqtr(`Trimestre (Código)`, format='%Y%q')) %>%
select(date, "Tempo de procura de trabalho", Valor) %>%
as_tibble()

Com os dados disponíveis, podemos construir o gráfico abaixo.

Os dados do IBGE, entretanto, só estão disponíveis até o primeiro trimestre de 2020.

Os membros do Clube AM, a propósito, têm acesso aos códigos completos dos nossos Comentários e Exercícios.

_______________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como Medir o Ciclo das Concessões de Crédito usando Python

Este artigo apresenta uma análise quantitativa da relação entre o ciclo de concessões de crédito, a atividade econômica e a política monetária no Brasil. Utilizando a linguagem Python, o estudo aplica técnicas de decomposição de séries temporais (X13-ARIMA e Filtro HP) para isolar os componentes cíclicos dos dados. Os resultados da modelagem econométrica confirmam a pro-ciclicidade do crédito em relação ao hiato do produto e sua sensibilidade às variações no hiato da taxa de juros real.

Choque de juros e renda em bens duráveis e não duráveis usando Python

Este artigo analisa a dinâmica do consumo no Brasil utilizando Python e modelos de Vetores Autorregressivos (VAR). Ao segregar bens duráveis e não duráveis, o estudo quantifica a sensibilidade a choques de juros e renda. Criamos todo o processo através do ciclo de dados: coleta, tratamento, análise de dados, modelagem e apresentação dos resultados, tudo automatizado usando a linguagem Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.