Baixando dados do Banco Mundial com o R

Com o R, é possível acessar diversas bases de dados e baixar o que precisa diretamente para o RStudio. Um exemplo disso é a base de dados do Banco Mundial. Nessa Dica de R - sim, volto a publicar toda quarta-feira uma dica de R aqui no Blog - vamos mostrar como pegar os dados sobre poupança e taxa de juros de diversos países com o pacote WDI. Como de praxe, o código começa carregando alguns pacotes que utilizaremos.


library(WDI)
library(ggplot2)
library(ggrepel)
library(png)
library(grid)

A seguir, podemos pegar os dados que precisamos.


interest = WDI(country='all',
indicator = 'FR.INR.RINR',
start=2019, end=2019)

saving = WDI(country = 'all',
indicator = 'NY.GNS.ICTR.ZS',
start=2019, end=2019)

data = cbind(interest, saving)
data = data[complete.cases(data),]
data$iso2c = data$iso2c = data$country = data$year = data$year = NULL
colnames(data) = c('interest', 'country', 'saving')
data = subset(data, interest>0 & saving>0)

Um gráfico com os dados é posto abaixo.

 

______________

Para acessar os códigos completos desse exercício, é preciso fazer parte do Clube AM.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é e como funcionam Sistemas Multi-Agentes

Sistemas multi-agentes (MAS) representam uma nova forma de estruturar aplicações de inteligência artificial, especialmente úteis para lidar com problemas complexos e distribuídos. Em vez de depender de um único agente generalista, esses sistemas são compostos por múltiplos agentes especializados que colaboram, competem ou se coordenam para executar tarefas específicas. Neste post, explicamos o que são os MAS, seus principais componentes (como LLMs, ferramentas e processos) e as arquiteturas mais comuns.

O que é um Vector Database e como criar um com LangChain

Nesta postagem, mostramos como construir um pipeline simples de RAG (Retrieval-Augmented Generation) usando o LangChain, o modelo Gemini 2.0 Flash e o Vector Database Chroma. Utilizamos como exemplo o Relatório de Inflação de junho de 2025 do Banco Central do Brasil. O fluxo envolve o download e leitura do PDF, divisão do texto com RecursiveCharacterTextSplitter, geração de embeddings com Gemini, armazenamento vetorial com Chroma e busca semântica para responder perguntas com base no conteúdo do relatório. É uma aplicação prática e didática para economistas que desejam integrar IA ao seu fluxo de análise.

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.