Dicas de R: o pacote seasonal

Fala galera, nessa semana no Dicas de R vamos fazer um overview do pacote seasonal. Criado para a dessazonalização de séries, o pacote é uma interface em R para o X13-ARIMA-SEATS, permitindo que você possa utilizar as funcionalidades desse programa dentro do próprio R. Vamos testar utilizar ele para a série da variação mensal do IPCA, então começamos a análise importando os dados:

library(sidrar)
library(tidyverse)
library(lubridate)
library(ggplot2)
library(scales)

ipca_base <- get_sidra(api = "/t/1737/n1/all/p/all/v/63")

ipca <- ipca_base %>% #ipca trimestralizado
mutate(date = parse_date_time(`Mês (Código)`, "ym")) %>%
select(Valor, date) %>%
filter(date > "2003-05-01")

ggplot(ipca, aes(x=as.Date(date), y=Valor, color=factor(year(date))))+geom_line(size=1.05)+
scale_color_manual(values = rep(c("#36879c", "#26ed6c"), times = 10)) +
scale_x_date(breaks = date_breaks("2 years"),
labels = date_format("%Y")) +
labs(x='', y='%', title = 'Variação mensal do IPCA',
caption = 'Fonte: SIDRA e Análise Macro') +
theme_light() +
theme(axis.text.x=element_text(angle=45, hjust=1),
legend.position = 'none',
strip.text = element_text(size=10, face='bold'))

Como podemos ver no gráfico, a inflação aparenta apresentar uma sazonalidade forte, sendo mais alta nos meses iniciais e finais do ano. Isso indica que parte de sua trajetória é descrita por equações predeterminadas, logo se quisermos analisar o impacto de outras variáveis sobre a inflação, precisamos extrair os componentes idiossincráticos de cada período, ou seja, o "ruído" que realmente pode ter sido impactado por tais variáveis. A extração pode ser feita com diversos métodos, como a função decompose() do R base. Vamos agora fazer ela com o seasonal:

library(seasonal)

ipcats <- ts(ipca$Valor, start = c(2003, 6), frequency = 12)

dessaz <- seas(ipcats, x11 = "")

plot(dessaz)

No código acima, importamos o pacote, transformamos os dados em série temporal, e rodamos a função seas() que faz o ajuste sazonal, utilizando o método X11. É possível converter quase toda especificação de código do X13-ARIMA-SEATS para o R, como apresentado na página de exemplos do site do pacote. Uma especificação interessante é o gráfico da sazonalidade estimada:

plot(dessaz$series$d10, xlab = "Sazonalidade", ylab="Ano", main = "Componente sazonal do IPCA")


Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar Modelos de Linguagem no R com o pacote {elmer}

Na análise de dados contemporânea, o uso de Modelos de Linguagem (LLMs) vem se consolidando como uma ferramenta poderosa para automatizar e aprimorar tarefas analíticas. Ao integrarmos LLMs a pacotes como o ellmer, podemos ampliar nossas capacidades de extração, interpretação e automação de dados no ambiente R. Neste post, exploramos o papel desses modelos e detalhamos como o ellmer opera dentro do universo da linguagem de programação R.

Introdução ao AutoGen: Agentes Inteligentes na Análise Financeira

O AutoGen é um framework da Microsoft que permite criar agentes de IA colaborativos. Na área financeira, pode automatizar a coleta de dados, cálculos de indicadores e geração de relatórios. Este artigo apresenta os conceitos básicos e um exemplo aplicado a ações de empresas.

Como usar LangGraph e LLMs para prever a inflação no Brasil

Este post apresenta um estudo de caso sobre como utilizar o LangGraph e modelos de linguagem para estruturar um sistema multiagente voltado à previsão do IPCA. O exercício cria um sistema que utiliza-se de personas analíticas que trabalham em paralelo, permitindo validar previsões, calcular métricas de erro e consolidar relatórios automatizados. A abordagem demonstra como fluxos multiagentes podem apoiar a análise econômica, oferecendo múltiplas perspectivas e maior consistência nos resultados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.