Março vermelho no país do negacionismo

É difícil encontrar adjetivo para caracterizar o momento atual que passa o país. A pandemia do Covid-19 atingiu o seu pior momento até aqui: março registrou quase 67 mil mortes pelo novo coronavírus. Nesse post, registramos a soma mensal de mortes provocada pela irresponsabilidade e pelo descaso, no Brasil e nos estados.

Membros do Clube AM, por suposto, têm acesso a todos os códigos desse exercício.

Os dados são coletados como abaixo.


## Carregar pacotes
library(tidyverse)
library(lubridate)

## Coletar dados
covid_df = readr::read_csv("https://raw.githubusercontent.com/wcota/covid19br/master/cases-brazil-states.csv")

A seguir, podemos construir o gráfico abaixo, destacando o mês de março.

Como se vê, o novo coronavírus foi responsável por quase 67 mil mortes somente em março, atingindo o pior momento até aqui. A situação nos estados, por suposto, pode ser vista a seguir.

Um março triste e desolador para todos nós, infelizmente.

Membros do Clube AM, por suposto, têm acesso a todos os códigos desse exercício.

____________________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar Modelos de Linguagem no R com o pacote {elmer}

Na análise de dados contemporânea, o uso de Modelos de Linguagem (LLMs) vem se consolidando como uma ferramenta poderosa para automatizar e aprimorar tarefas analíticas. Ao integrarmos LLMs a pacotes como o ellmer, podemos ampliar nossas capacidades de extração, interpretação e automação de dados no ambiente R. Neste post, exploramos o papel desses modelos e detalhamos como o ellmer opera dentro do universo da linguagem de programação R.

Introdução ao AutoGen: Agentes Inteligentes na Análise Financeira

O AutoGen é um framework da Microsoft que permite criar agentes de IA colaborativos. Na área financeira, pode automatizar a coleta de dados, cálculos de indicadores e geração de relatórios. Este artigo apresenta os conceitos básicos e um exemplo aplicado a ações de empresas.

Como usar LangGraph e LLMs para prever a inflação no Brasil

Este post apresenta um estudo de caso sobre como utilizar o LangGraph e modelos de linguagem para estruturar um sistema multiagente voltado à previsão do IPCA. O exercício cria um sistema que utiliza-se de personas analíticas que trabalham em paralelo, permitindo validar previsões, calcular métricas de erro e consolidar relatórios automatizados. A abordagem demonstra como fluxos multiagentes podem apoiar a análise econômica, oferecendo múltiplas perspectivas e maior consistência nos resultados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.