Março vermelho no país do negacionismo

É difícil encontrar adjetivo para caracterizar o momento atual que passa o país. A pandemia do Covid-19 atingiu o seu pior momento até aqui: março registrou quase 67 mil mortes pelo novo coronavírus. Nesse post, registramos a soma mensal de mortes provocada pela irresponsabilidade e pelo descaso, no Brasil e nos estados.

Membros do Clube AM, por suposto, têm acesso a todos os códigos desse exercício.

Os dados são coletados como abaixo.


## Carregar pacotes
library(tidyverse)
library(lubridate)

## Coletar dados
covid_df = readr::read_csv("https://raw.githubusercontent.com/wcota/covid19br/master/cases-brazil-states.csv")

A seguir, podemos construir o gráfico abaixo, destacando o mês de março.

Como se vê, o novo coronavírus foi responsável por quase 67 mil mortes somente em março, atingindo o pior momento até aqui. A situação nos estados, por suposto, pode ser vista a seguir.

Um março triste e desolador para todos nós, infelizmente.

Membros do Clube AM, por suposto, têm acesso a todos os códigos desse exercício.

____________________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como medir a comunicação do Banco Central?

Descubra como o índice ALT transforma a linguagem do Banco Central em dados analisáveis, permitindo investigar como o tom das atas do COPOM varia conforme o cenário macroeconômico e as decisões de política monetária.

Análise de Séries Temporais com a Linguagem R: dados ISP-RJ

Neste tutorial, vamos conduzir uma análise diagnóstica completa. Começaremos visualizando a série e sua tendência, depois a decomporemos em seus componentes fundamentais. Em seguida, investigaremos a distribuição estatística dos dados e, por fim, aplicaremos técnicas mais avançadas, como a análise de autocorrelação e testes de estacionariedade, que são pré-requisitos cruciais para a construção de modelos de previsão robustos como o ARIMA.

Análise de dados com a Linguagem R: Segurança no Rio de Janeiro

Neste post, criamos um tutorial prático que guia você através do ciclo completo de análise de dados, desde a coleta e tratamento até a visualização e comunicação de resultados. Utilizando a linguagem R, o ecossistema tidyverse e a ferramenta de publicação Quarto, analisamos a base de dados de criminalidade do Instituto de Segurança Pública (ISP) do Rio de Janeiro.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.