Transformando os gráficos do ggplot em gifs

O gganimate é um pacote que permite extender os gráficos do ggplot para uma forma animada, em formato de vídeo ou gif. Esse tipo de visualização pode ser muito interessante, principalmente para apresentações de slides ou textos online. Para demonstrar a funcionalidade do pacote, iremos analisar o comportamento da participação da agropecuária no PIB das microrregiões do Brasil, entre 2002 e 2018. Para capturar os dados, iremos utilizar o pacote sidrar, que faz o download dos dados do IBGE. Já para plotar o mapa, utilizaremos o pacote geobr.

Além dos pacotes carregados pelo library, é necessário instalar os pacotes gifski, png e transformr.

 


#install.packages('gifski')
#install.packages('png')
#install_github("thomasp85/transformr")
library(geobr)
library(sidrar)
library(gganimate)

Além de fazer o download dos dados e dos mapas, é preciso junta-los em um mesmo dataframe por um denominador comum. No caso, utilizaremos o código IBGE da microrregião, presente em ambas as bases.

pib_agro = sidrar::get_sidra(5938,
variable = 516, #variavel e porcentagem do agro no pib
geo = "MicroRegion",
period = "all")

mapa_micro = read_micro_region()
mapa_micro$code_micro = as.character(mapa_micro$code_micro)

merged = dplyr::left_join(mapa_micro, pib_agro, by = c("code_micro" = "Microrregião Geográfica (Código)"))
merged$Ano = as.integer(merged$Ano)

Com o dataframe pronto, é possível plotar o mapa. Veja que os comandos do pacote gganimate são as duas últimas linhas. O comando transition_time faz a definição da variável que vai corresponder aos frames do vídeo. Já com o ease_aes, o pacote faz uma interpolação entre os frames para gerar uma suavização dos dados.


ggplot() +
geom_sf(data=merged, aes(fill=Valor), color= NA) +
labs(subtitle="Participação da agricultura no PIB", size=8) +
scale_fill_continuous(trans = "reverse") +
theme_minimal() +
theme(axis.title=element_blank(),
axis.text=element_blank(),
axis.ticks=element_blank()) +
labs(title = 'Year: {frame_time}') +
transition_time(Ano) +
ease_aes('linear')


Com o mapa, é possível perceber que a participação da agropecuária caiu no período de forma quase geral, principalmente nas regiões Sudeste e Nordeste do país, mas permanece forte em parte das regiões Centro-oeste e Norte.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como choques inflacionários afetam a previsão da Selic?

Como mensurar a importância de choques na inflação sobre o erro de previsão da taxa de juros? Neste exercício quantificamos esta pergunta sob a ótica de um modelo VAR, usando dados recentes da macroeconomia brasileira. Especificamente, estimamos a decomposição da variância dos erros de previsão do modelo, analisando choques na inflação da gasolina e sua importância sobre a variância dos erros de previsão da taxa Selic.

Modelo de previsão para o preço da gasolina

Neste exercício exploramos os dados públicos sobre o preço da gasolina no Brasil, sua composição, evolução temporal, políticas associadas e, por fim, construímos um modelo simples de previsão. Com um modelo em mãos, o analista pode cenarizar o comportamento futuro da série da forma como preferir. Todos os procedimentos foram feitos usando a linguagem de programação Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.