Impacto do aumento da gasolina e do óleo diesel no IPCA de 2013 e nas previsões do GECE.

A partir da meia noite do último dia 30/11 estão em vigor os aumentos de 4% e 8%, respectivamente, sobre a gasolina e óleo diesel que a Petrobras aprovou para a venda dos combustíveis nas refinarias. O GECE fez o cálculo do impacto desses reajustes sobre o Índice Nacional de Preços ao Consumidor Amplo (IPCA), o índice que representa a meta de inflação no país. Supondo que o repasse seja integralmente repassado ao consumidor – algo que não é inexorável – o impacto máximo do aumento da gasolina é de 0,16 pontos percentuais sobre o IPCA de dezembro (para fins de simplificação), enquanto o impacto do óleo diesel é de apenas 0,01 pontos percentuais. Chega-se a esse número tomando a média dos pesos desses subitens (51040001, gasolina e 51040003, óleo diesel) em 2013 e multiplicando os mesmos pelo reajuste anunciado para cada um. A gasolina teve peso médio de 3,88% no IPCA desse ano, contribuindo em média com -3% na variação mensal do índice. O pico de contribuição ocorreu em fevereiro, quando foi responsável por 26,4% da elevação de 0,6% do IPCA naquele mês. A mudança nas nossas previsões para o IPCA desse ano é o que detalhamos em seguida.

A previsão do GECE para o IPCA em 2013 era de 5,65%, supondo que em novembro e dezembro o índice ficasse, respectivamente, em 0,54% e 0,68%. Com o reajuste, o valor do mês de dezembro vai para 0,84%, o que eleva o IPCA de 2013 para 5,82%. Nesse cenário consideramos o limite mínimo da previsão em 5,74% e o máximo em 5,91%,.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Regimes da Política Monetária Brasileira com Markov Switching no Python

Este exercício analisa a política monetária brasileira utilizando modelos de Markov Switching Regression. O objetivo é identificar diferentes regimes de política monetária e como eles influenciam a taxa Selic, a meta de inflação e o hiato do produto. Usamos a linguagem de programação Python para o processo de coleta, tratamento, análise e modelagem dos dados.

Como criar janelas móveis de séries temporais usando o Python

Janelas Móveis/Deslizantes, ou Rolling Windows, são termos frequentes na análise de séries temporais. Mas o que são e como aplicá-las no Python? Neste tutorial, mostramos como essa ferramenta é essencial para a análise de dados utilizando como exemplo a correlação móvel de ações brasileiras.

Como incorporar choques em cenários de previsão?

Neste exercício mostramos como incorar choques no cenário de variáveis exógenas para fins de previsão. Usando como exemplo a previsão do IPCA, através de um modelo de machine learning, mostramos os cuidados a serem tomados e uma forma simples de definir o cenário com os choques. Ao final, apresentamos uma previsão com um suposto choque e uma previsão sem o choque para comparação.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.