Medindo o efeito da incerteza sobre o PIB Mensal

Mesmo após a redução dos níveis de incerteza vistos no ano passado, há ainda muito por percorrer para um patamar considerado aceitável. Uma elevação da incerteza, sabemos da teoria econômica, acaba por adiar investimentos e mesmo decisões de consumo de bens duráveis, o que tem efeitos não desprezíveis sobre o PIB. Nesse Comentário de Conjuntura, verificamos através de funções impulso-resposta como a incerteza afeta a variação acumulada em 12 meses do PIB mensal.

Para ilustrar o efeito da incerteza sobre o PIB, usamos as séries da Fundação Getúlio Vargas: o índice de incerteza econômica e o Monitor do PIB mensal.

Uma vez disponíveis as séries, nós verificamos se existe cointegração entre elas por meio da metodologia de Johansen. Rejeitada a hipótese nula de inexistência de cointegração, seguimos o protocolo de Johansen e não conseguimos rejeitar que existe ao menos um vetor de cointegração entre as séries.

Uma vez, então, construído o modelo VEC, nós transformamos o mesmo em um modelo VAR em nível e observamos o efeito de um impulso sobre a incerteza na variação acumulada em 12 meses do PIB mensal. O resultado é posto abaixo.

De fato, existe um efeito negativo do aumento da incerteza sobre a variação do PIB mensal, como esperado pela teoria econômica.

(*) Todos os detalhes do exercício estão disponíveis no Curso de Macroeconometria II da Análise Macro.

____________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Qual a relação entre benefícios sociais e a taxa de participação do mercado de trabalho?

Este exercício apresenta uma investigação econométrica sobre a persistente estagnação da taxa de participação no mercado de trabalho brasileiro no período pós-pandemia. Utilizando a linguagem R e dados públicos do IBGE e Banco Central, construímos um modelo de regressão linear múltipla com correção de erros robustos (Newey-West). A análise testa a hipótese de que o aumento real das transferências de renda (Bolsa Família/Auxílio Brasil) elevou o salário de reserva, desincentivando o retorno à força de trabalho.

Estamos em pleno emprego no mercado de trabalho?

Este artigo investiga se o mercado de trabalho brasileiro atingiu o nível de pleno emprego, utilizando uma estimativa da NAIRU (Non-Accelerating Inflation Rate of Unemployment) baseada na metodologia de Ball e Mankiw (1997). Através de uma modelagem em Python que unifica dados históricos da PME e PNAD Contínua com as expectativas do Boletim Focus, comparamos a taxa de desocupação corrente com a taxa neutra estrutural. A análise visual e quantitativa sugere o fechamento do hiato de desemprego, sinalizando potenciais pressões inflacionárias. O texto detalha o tratamento de dados, a aplicação do Filtro Hodrick-Prescott e discute as vantagens e limitações da metodologia econométrica adotada.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.