Hackeando o R: gerando gráficos de modo interativo com o esquisse

No Hackeando o R de hoje, vamos apresentar o pacote esquisse, que facilita a geração de gráficos interativos no R. A principal funcionalidade do pacote é o add-in que ele adiciona ao R, que permite gerar gráficos de modo intuitivo e sem olhar diretamente para o código, sendo uma boa ferramenta para trabalhos rápidos. Após instalar o pacote, podemos acessar suas ferramentas no RStudio:

Vamos então carregar alguns dados para trabalhar dentro da ferramenta. Para o exemplo, utilizaremos 4 das principais variáveis reportadas pelo Boletim FOCUS.

library(rbcb)
library(tidyverse)

dados = get_annual_market_expectations(c('PIB Total', 'IPCA', 
'Taxa de câmbio', 
'Meta para taxa over-selic'
),
start_date = '2019-01-01') %>%
replace_na(replace = list(indic_detail = 'Média'))

dados$indic = ifelse(dados$indic == 'Taxa de câmbio', 'Taxa de Câmbio', 
dados$indic)

dados = dados %>% filter(reference_year == '2021' & base == 0 & 
indic_detail %in% c('Média', 'Fim do ano') & 
indic %in% c('IPCA', 'Meta para taxa over-selic',
'PIB Total', 'Taxa de Câmbio') & 
date > '2020-06-01')

Ao abrir o add-in, iremos selecionar os dados a serem utilizados:

Dentro da ferramenta, teremos então todas as colunas do dataframe, e diversas opções do ggplot2. Abaixo, colocamos a data no eixo x, a expectativa média no eixo y, e separamos os dados pela variável. É importante notar que os dados já foram transformados no formato tall, como fazemos em gráficos de múltiplas linhas normalmente.

Podemos personalizar diversas configurações, como adicionar título, mudar coordenadas, e alterar o layout. Após isso, podemos salvar o gráfico localmente. Outra opção é salvá-lo diretamente em um slide de PowerPoint. Isso pode ser feito tanto diretamente no add-in, como para objetos do tipo ggplot que você já possui localmente.



Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é um Vector Database e como criar um com LangChain

Nesta postagem, mostramos como construir um pipeline simples de RAG (Retrieval-Augmented Generation) usando o LangChain, o modelo Gemini 2.0 Flash e o Vector Database Chroma. Utilizamos como exemplo o Relatório de Inflação de junho de 2025 do Banco Central do Brasil. O fluxo envolve o download e leitura do PDF, divisão do texto com RecursiveCharacterTextSplitter, geração de embeddings com Gemini, armazenamento vetorial com Chroma e busca semântica para responder perguntas com base no conteúdo do relatório. É uma aplicação prática e didática para economistas que desejam integrar IA ao seu fluxo de análise.

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Análise de Dados com REPL Tool e LLM usando LangGraph

Neste post, vamos mostrar como você pode criar um agente que interpreta e executa código Python em tempo real, utilizando o REPL-Tool e um LLM da família Gemini. Começamos com um exemplo genérico e, em seguida, aplicamos a mesma estrutura à análise econômica de uma série histórica do IPCA.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.