Hackeando o R: calculando o carry-over estatístico de uma variável

No Hackeando o R de hoje, vamos mostrar como fazer a visualização do carry-over estatístico de uma série temporal. Essa estatística pode ser uma importante ferramenta para a análise de agregações de dados ao longo do tempo pois facilita identificar a variação que ocorreu apenas no período corrente, extraindo a variação que é apenas resíduo do período anterior, chamada de carry-over. Abaixo, visualizamos os dois efeitos teóricos com uma simulação de dados

library(RcppRoll)
library(ggplot2)

set.seed(1)
x = data.frame(valor = (1:100) + rnorm(100), t = 1:100)

ggplot(x[49:72,], aes(x = t, y = valor))+geom_bar(stat = 'identity') +
coord_cartesian(ylim = c(45, 73))+
geom_segment(aes(x=49, xend=60, y = 54.68361, yend=54.68361), size = 1.2)+
geom_label(aes(x=49, y=54.68361, label = 'A'))+
geom_segment(aes(x=61, xend=72, y = 59.86495, yend=59.86495), size = 1.2)+
geom_label(aes(x=61, y=59.86495, label = 'B'))+
geom_segment(aes(x=61, xend=72, y = 66.85647, yend=66.85647), size = 1.2)+
geom_label(aes(x=61, y=66.85647, label = 'C'))+
labs(x='', y = '')+
theme_bw()

No exemplo acima, A é a média do ano anterior, C a média do ano corrente, e B é o valor da última observação do ano anterior, repetido para o ano corrente, ou seja, a média do ano corrente caso não houvesse crescimento. Ao compararmos a variação interanual dos dois períodos, podemos decompor esse valor em duas partes: a variação percentual de A a B, chamada de carry-over, e a variação percentual de B a C (mensurada no nível de A), que é o crescimento que ocorreu apenas a partir da última observação do ano anterior. A função abaixo calcula tais valores para uma variável mensal qualquer:


calcula_carry_over_anual <- function(data) {
A <- dplyr::lag(RcppRoll::roll_meanr(data, n=12), n=12)
B <- dplyr::lag(data, n = 12)
C <- RcppRoll::roll_meanr(data, n=12)

carry_over <- (B-A)/A
cresc_real_do_periodo <- (C-B)/A

lista = data.frame(carry_over, cresc_real_do_periodo, carry_over+cresc_real_do_periodo)
return(lista)
}

 

Então, vamos fazer a decomposição da série de nível do IBC como exemplo:

library(BETS)
library(tidyverse)
library(ggplot2)
library(scales)

ibc = BETSget(24363, data.frame=TRUE)

tibble(ibc$date, calcula_carry_over_anual((ibc$value))*100) %>%
magrittr::set_colnames(c('date', 'carry_over', 'cresc_real', 'soma')) %>%
pivot_longer(-date, names_to = 'var', values_to = 'val') %>%
filter(date>as.Date('2018-01-01') & var != 'soma') %>%
mutate(idk = RcppRoll::roll_sumr(val, n=2),
idk = ifelse(rep(c(FALSE, TRUE), times = 39), idk, NA)) %>%
ggplot(aes(x=date, y = val, fill = var))+geom_bar(stat = 'identity')+
scale_x_date(breaks = date_breaks('3 months'),
labels = date_format("%b/%Y"))+
scale_fill_manual(labels = c('Carry over', 'Crescimento real'), values = c('#244747', '#9ae5de'))+
geom_line(aes(x=date,y=idk, color = 'Agregado'), size= 1.2, linetype='solid')+
scale_color_manual(values = c('Agregado' = '#e89835'))+
geom_hline(yintercept=0, colour='black', linetype='dashed')+
labs(title='Decomposição da variação do nível do IBC', y = '%',
caption='Fonte: IBGE')+
theme(panel.background = element_rect(colour = 'white', fill='white'),
legend.position = 'right',
strip.text = element_text(size=8, face='bold'),
axis.text.x = element_text(angle = 45, hjust=1),
plot.title = element_text(size=10, face='bold'),
legend.title = element_blank(),
plot.caption.position = 'plot',
axis.title.x = element_blank())

________________________

(*) Para entender mais sobre séries temporais e como realizar cálculos estatísticos, confira nosso Curso de Análise de Séries Temporais.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como Criar um Agente Analista para Dados da Inflação com LangGraph

Este post mostra como automatizar a análise da inflação brasileira com o uso de agentes inteligentes. Utilizando o LangGraph, integramos dados do IPCA, núcleos de inflação e grupos do índice para criar um sistema capaz de gerar análises econômicas automatizadas com base em consultas em linguagem natural.

Como Criar um Agente para Análise da Atividade Econômica com LangGraph

Este post mostra como automatizar a análise da atividade econômica brasileira com agentes inteligentes. Utilizando o framework LangGraph e dados do IBGE e Banco Central, construímos um sistema capaz de gerar respostas analíticas a partir de perguntas em linguagem natural, unindo automação de consultas SQL e interpretação econômica.

Introdução ao LangGraph

LangGraph é um framework em Python desenvolvido para gerenciar o fluxo de controle de aplicações que integram um modelo de linguagem (LLM). Com ele podemos construir Agentes de IA robustos e previsíveis.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.