Hackeando o R: MCMC - algoritmo de Metropolis

No Hackeando o R de hoje, vamos apresentar o método de MCMC, ferramenta de grande importância para a estimação dentro da estatística bayesiana. O exemplo que apresentamos na semana passada era de fácil computação (como pode ser visto pelos códigos utilizados), muito por causa do fato de que a equação encontrada possuía solução fechada. Quando possuímos poucos parâmetros para estimar, e o espaço de possibilidades dos parâmetros é pequeno, também podemos resolver 'manualmente' calculando as probabilidades, pois é questão de percorrer cada uma das possibilidades e encontrar o valor do Teorema de Bayes. Para problemas mais complexos, como os que encontramos na vida real, essas soluções fáceis muitas vezes não estão disponíveis. Pense no caso de uma probabilidade condicional sem fórmula fechada, para a estimação de 6 parâmetros, que podem assumir 1000 valores cada um. Estaríamos olhando para o cálculo de 1000^6 combinações, o que é pesado até para computadores modernos.

A solução para esse problema é o chamado MCMC (Monte-Carlo Markov Chain). Apesar dele ser mais utilizado em problemas com múltiplos parâmetros, vamos mostrar como ele funciona com apenas um, para facilitar a compreensão. O ponto importante do método é que ele só depende da estimação dos termos no numerador do Teorema de Bayes (mostrado abaixo), eliminando qualquer preocupação com a integral do denominador, que é o grande problema para encontrarmos soluções fechadas.

A ideia básica do MCMC é gerar uma estimativa da distribuição a posteriori a partir de amostras dela, sem que nós precisemos construir ela per se. Hoje, vamos mostrar o algoritmo de Metropolis, que gera uma aproximação da distribuição a posteriori através de regras de decisão simples. O algoritmo utiliza apenas a razão entre duas probabilidades a posteriori, logo há estimação da integral acaba sendo desnecessária. Dada uma posição inicial para os parâmetros, os passos do algoritmo são simples:

1: geramos um movimento aleatório dos parâmetros no seu espaço, que será testado;
2: Verificamos se a posteriori na nova posição tem valor maior que na original. Se sim, o movimento ocorre. Caso contrário, o movimento ocorrerá com probabilidade igual à razão entre as posterioris;
3: geramos uma observação uniforme de 0 a 1, e comparamos ela com a razão calculada, de modo a validar o movimento acima.

Com isso, vamos testar o algoritmo para uma distribuição de eventos Bernoulli. Sabemos que essa distribuição possui fórmula fechada, logo iremos utilizá-la para comparar com a distribuição 'aproximada' encontrada de modo empírico.

dados = c(rep(0,6),rep(1,14))

probParcial = function(theta, data){

z = sum(data)
N = length(data)
p_Xi_dado_Theta = theta^z * (1-theta)^(N-z)
p_Xi_dado_Theta[theta > 1 | theta < 0] = 0

pTheta = dbeta(theta , 1, 1)
pTheta[theta > 1 | theta < 0] = 0

parcial = p_Xi_dado_Theta * pTheta
return(parcial)
}

n = 50000
trajetoria = rep(0, n)
trajetoria[1] = 0.5

set.seed(12334)

for ( t in 1:(n-1) ) {
posicao = trajetoria[t]

choque = rnorm(1, mean = 0, sd = 0.2)

probabilidade = min(1,
probParcial(posicao + choque, dados)
/ probParcial(posicao, dados))

if ( runif(1) < probabilidade ) {

trajetoria[t+1] = posicao + choque

} else {

trajetoria[t+1] = posicao

}
}

df = data.frame(passo = 1:50000, valor = trajetoria)

library(ggplot2)

ggplot(df, aes(x=valor)) + geom_histogram(aes(y = stat(density))) +
stat_function(fun = function(x) dbeta(x, 15, 7), color = "red",
size = 1)

________________________
(*) Para entender mais sobre análises estatísticas, confira nosso Curso de Estatística Bayesiana usando o R.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Análise de Dados com REPL Tool e LLM usando LangGraph

Neste post, vamos mostrar como você pode criar um agente que interpreta e executa código Python em tempo real, utilizando o REPL-Tool e um LLM da família Gemini. Começamos com um exemplo genérico e, em seguida, aplicamos a mesma estrutura à análise econômica de uma série histórica do IPCA.

Frameworks para criar AI Agents

Neste post, vamos dar o primeiro passo rumo à construção de Agentes de IA mais sofisticados, capazes de tomar decisões, interagir com ferramentas externas e lidar com tarefas complexas. Para isso, precisamos entender o papel dos frameworks agenticos (ou agentic frameworks) e como eles podem facilitar esse processo. Aqui introduzimos dois frameworks populares de desenvolvimento de Agentes de IA.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.