Como retirar desdobramentos e dividendos do preço de ações através do R

Em grande maioria, fontes de dados financeiros disponibilizam série de preços de ativos financeiros já ajustados de acordo com mudanças ocorridas tanto por desdobramentos, quanto por dividendos recebidos. No post de hoje vamos utilizar o pacote {quantmod} para retirar esses valores de uma série de preços de uma
ação.

library(quantmod)
library(magrittr)

Vamos utilizar como exemplo a série de preços das ações da MGLu3, isso porque em outubro de 2020 ocorreu o desdobramento de suas ações. Primeiro iremos visualizar o preço de fechamento já ajustado.

getSymbols("MGLU3.SA",
                     auto.assign = TRUE,
                     from = "2020-01-01",
                     to = "2020-12-31")

plot(Ad(MGLU3.SA))

Mas, e se quisermos saber a série de preços antes do desdobramentos, quando ocorreu, bem como o mesmo para os dividendos, além de seus valores? Utilizaremos as funções getSplits() e getDividends(), respectivamente, para efetuar esse trabalho.

splits <- getSplits("MGLU3.SA",
                    from = "2020-01-01",
                     to = "2020-12-31")


dividends <- getDividends("MGLU3.SA", 
                          split.adjust = FALSE,
                          from = "2020-01-01",
                          to = "2020-12-31")

Em seguida, utilizaremos a função adjRatios() com a série de fechamento da ação para que possamos ter a relação do desdobramento e dos dividendos ao longo do tempo.

close <- Cl(MGLU3.SA)


ratios <- adjRatios(splits = splits,
                    dividends = dividends,
                    close = close)

Por fim, calculamos todos esses ajustes de forma a obter a série de preços "crua".

close_mglu <- close * ratios[, "Split"] * ratios[, "Div"]


plot(close_mglu)

Para tornar o caminho mais simples, o {quantmod} também disponibiliza uma função que torna a série "crua" de forma mais fácil.

mglu_adj <- adjustOHLC(MGLU3.SA, symbol.name = "MGLU3.SA")

plot(Cl(mglu_adj))

________________________
(*) Para entender mais sobre Mercado Financeiro e aprender como realizar a coleta, tratamento e visualização de dados financeiros, confira nosso curso de R para o Mercado Financeiro.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Tratamento e transformação de séries temporais macroeconômicas para modelagem

"Garbage in, garbage out" é a regra de ouro na previsão macroeconômica. Antes de aplicar qualquer modelo de IA ou econometria para prever indicadores como o IPCA ou o PIB, existe um trabalho crucial de tratamento de dados. Neste post, abrimos os bastidores do nosso dashboard de previsões e mostramos o passo a passo para transformar dados brutos de múltiplas fontes (como BCB, IBGE e FRED) em séries prontas para modelagem. Veja como lidamos com diferentes frequências, aplicamos transformações e usamos metadados para criar um pipeline de dados robusto e automatizado.

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.