Como reverter a primeira diferença de uma série temporal?

 

Modelagem de séries temporais frequentemente exige a aplicação de transformações nas variáveis, tal como a bem conhecida primeira diferença. Formalmente, podemos descrever essa transformação como:

Ou seja, dado uma série temporal regularmente espaçada, subtraímos do valor em t o valor anterior (t-1), obtendo a série dita "na primeira diferença" ou "nas diferenças".

A mudança de nível da série geralmente contorna diversas características "não desejadas" pelo analista como tendência, sazonalidade, etc., mas dificulta a interpretação dos valores - especialmente quando pretende-se comunicá-los para públicos não técnicos. Para este objetivo é de grande utilidade saber como diferenciar uma série temporal e, sobretudo, também como reverter a transformação.

Para reverter a primeira diferença de uma série utilizamos a soma cumulativa, representada como:

Ou seja, no final teremos um vetor com a soma de cada valor em t com todos os anteriores, valores estes que neste caso podem representar a série na primeira diferença que se deseja reverter.

Exemplo no R

Para exemplificar, vamos aplicar um exercício simples no R com o objetivo de 1) tomar a primeira de uma série e 2) reverter a transformação para obter a série original.

Para esse exemplo você precisará dos seguintes pacotes:


library(magrittr) # CRAN v2.0.1
library(GetBCBData) # CRAN v0.6
library(dplyr) # CRAN v1.0.7
library(timetk) # CRAN v2.6.2
library(tsibble) # CRAN v1.0.1
library(tidyr) # CRAN v1.1.4

Utilizaremos uma série conhecidamente não estacionária: a taxa de câmbio (R$/US$). Primeiro, importamos a série diretamente do banco de dados do Banco Central (SGS/BCB) e tratamos os dados para obter um tibble:


dados <- GetBCBData::gbcbd_get_series(
id = 3696,
first.date = "2000-01-01",
use.memoise = FALSE
) %>%
dplyr::select("date" = "ref.date", "value") %>%
dplyr::as_tibble()
dados

Uma rápida visualização dos dados:


timetk::plot_time_series(
.data = dados,
.date_var = date,
.value = value,
.smooth = FALSE,
.title = "Taxa de câmbio (R$/US$)"
)

Para criar a série na primeira diferença usamos a função tsibble::difference1, com seus argumentos padrão:

dados %<>%
dplyr::mutate(value_diff = tsibble::difference(value))
dados

Quando a diferença é aplicada inevitavelmente perdemos uma observação (a primeira), sendo preenchida no objeto como um NA. Sendo assim, a reversão dessa série para o seu nível (valores originais) requer uma artimanha: devemos substituir o valor NA pelo valor original da série correspondente a esse período dos dados e, então, usar a função cumsum para calcular a soma cumulativa.
dados %<>%
dplyr::mutate(
value_diff = dplyr::if_else(is.na(value_diff), value, value_diff),
value_revert = cumsum(value_diff)
)
dados
Checando se a série revertida corresponde aos valores originais:
all.equal(dados$value_revert, dados$value)
# [1] TRUE

Os cálculos ocorreram conforme o esperado: a série original da taxa de câmbio importada do BCB é igual à série que aplicamos e revertemos a primeira diferença.

Simples, não?

Por fim, vale comparar visualmente o comportamento da série em nível e na diferença (primeiro gráfico):


dados %>%
dplyr::select(
"date",
"Nível" = "value",
"1ª diferença" = "value_diff",
"Série revertida" = "value_revert"
) %>%
tidyr::pivot_longer(
cols = -"date",
names_to = "variable"
) %>%
timetk::plot_time_series(
.date_var = date,
.value = value,
.facet_vars = variable,
.smooth = FALSE,
.title = "Taxa de câmbio (R$/US$)",
.interactive = FALSE
)

 


[1] Para um equivalente em base R veja ?diff.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Resultado PNADc Trimestral - 3° Trimestre/2024

A Análise Macro apresenta os resultados da PNADc Trimestral do 3º trimestre de 2024, com gráficos elaborados em Python para coleta, tratamento e visualização de dados. Todo o conteúdo, disponível exclusivamente no Clube AM, foi desenvolvido com base nos métodos ensinados nos cursos da Análise Macro, permitindo aos assinantes acesso aos códigos e replicação das análises.

Análise exploratória para modelagem preditiva no Python

Antes de desenvolver bons modelos preditivos é necessário organizar e conhecer muito bem os dados. Neste artigo, damos algumas dicas de recursos, como gráficos, análises e estatísticas, que podem ser usados para melhorar o entendimento sobre os dados usando Python.

Como usar modelos do Sklearn para previsão? Uma introdução ao Skforecast

Prever séries temporais é uma tarefa frequente em diversas áreas, porém exige conhecimento e ferramentas específicas. Os modelos de machine learning do Sklearn são populadores, porém são difíceis de aplicar em estruturas temporais de dados. Neste sentido, introduzimos a biblioteca Skforecast, que integra os modelos do Sklearn e a previsão de séries temporais de forma simples.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.