Índice de Sharpe

Um forma de medir o desempenho ou performance de um ativo, normalmente um fundo de investimento, ou mesmo uma carteira de investimento se dá através do Índice de Sharpe. O índice tem como propósito medir o desempenho do ativo por unidade de risco, ou seja, a cada 1 ponto de risco, quanto é adicionado de retorno do ativo. No post de hoje iremos trabalhar em como calcular o índice de Sharpe no R.

O Índice de Sharpe mede os retornos excedentes por unidade de risco, tomando aqui como medida de risco o *desvio padrão*. A fórmula do IS pode ser dada como:

Ou seja, a diferença entre o retorno do ativo e o retorno do ativo livre de risco, dividido pelo desvio padrão do respectivo ativo.

library(quantmod)
library(tidyquant)
library(timetk)
library(GetBCBData)
library(tidyverse)
library(xts)

Coletamos os preços dos ativos e calculamos o retorno do nosso portfólio.


# Define os ativos que irão ser coletados

tickers <- c("PETR4.SA", "ITUB4.SA", "ABEV3.SA", "JBSS3.SA")

# Define a data de início da coleta

start <- as.Date("2016-12-01")

# Realiza a coleta dos preços diários

prices <- getSymbols(tickers,
auto.assign = TRUE,
warnings = FALSE,
from = start,
src = "yahoo") %>%
map(~Cl(get(.))) %>%
reduce(merge) %>%
`colnames<-`(tickers)

# Transfroma os preços diários em mensais

prices_monthly <- to.monthly(prices,
indexAt = "lastof",
OHLC = FALSE)

# Calcula os retornos mensais

asset_returns <- Return.calculate(prices_monthly,
method = "log") %>%
na.omit()

&nbsp;

# Define os pesos de cada ativo

w <- c(0.50, 0.27, 0.13, 0.10)

# Calcula o retorno do portfolio baseado no peso de cada ativo

portfolio_return <- Return.portfolio(asset_returns,
weights = w) %>%
`colnames<-`("port_returns")

 

Podemos então calcular o índice de Sharpe. Para fins didáticos, iremos utilizar a taxa SELIC anual de 9,15%, mensurando o IS no ano de 2021. Como os dados estão mensais, devemos transformar a taxa selic em mensal.

rf = 9.15/100 # Define a taxa livre de risco

# Filtra os retornos para o ano de 2021

portfolio_return_2021 <- portfolio_return["2021"]

# Calcula o índice de Sharpe

SharpeRatio(R = portfolio_return_2021,
Rf = rf/12,
FUN = "StdDev")

É possível também que seja criado o Índice de Sharpe móvel, de forma que possamos acompanhar suas mudanças ao longo do tempo.

Para isso, utilizaremos as funções do pacote {tidyquant}.


# Cria a função do IS

sharpe_tq_roll <- function(df){
SharpeRatio(df,
Rf = rf,
FUN = "StdDev")
}

# Transforma de xts para tibble

portfolio_return_2021_tbl <- portfolio_return_2021 %>%
tk_tbl(preserve_index = TRUE,
rename_index = "date")

# Calcula o Índice de Sharpe móvel

rolling_sharpe_tq <-
portfolio_return_2021_tbl %>%
tq_mutate(
select = port_returns,
mutate_fun = rollapply,
width = 2,
FUN = sharpe_tq_roll,
col_rename = "sharpe") %>%
na.omit()

Por fim, visualizamos  o IS móvel.


rolling_sharpe_tq %>%
ggplot(aes(x = date, y = sharpe))+
geom_line(size = .8, color = "darkblue")+
labs(title = "Índice de Sharpe Móvel do Portfólio",
subtitle = "Ano de 2021, SELIC a 9,15 a.a%",
x = "",
y = "",
caption = "Elaborado por analisemacro.com.br")+
theme_minimal()

 

________________________

(*) Para entender mais sobre Mercado Financeiro e aprender como realizar a coleta, tratamento e visualização de dados financeiros, confira nosso curso de R para o Mercado Financeiro.
________________________

 

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.