Gerando Previsões Combinadas para a Inflação a partir dos grupos do IPCA

A inflação cheia medida pelo IPCA em um período t qualquer nada mais é do que a soma da contribuição da inflação em cada um dos seus nove grupos, de acordo com os pesos dos mesmos no índice. Em outros termos,

(1)   \begin{align*} \pi_t = \sum_{i=1}^{9} \pi_{t,i}^{g} p_{t,i}^{g} \end{align*}

onde \pi_t é a inflação cheia, \pi_{t,i}^{g} é a inflação em t no grupo i e p_{t,i}^{g} é o peso em t do grupo i no índice cheio. De modo a ilustrar, podemos baixar com o pacote sidrar, as variações e os pesos desses nove grupos do IPCA, conforme o código abaixo.


## Pacotes
library(sidrar)
library(ggplot2)
library(forecast)
library(timetk)
library(zoo)
library(scales)
library(tidyverse)

## Baixar e tratar os dados
tab1 = get_sidra(api='/t/2938/n1/all/v/63,66/p/all/c315/7170,7445,7486,7558,7625,7660,7712,7766,7786/d/v63%202,v66%204')
tab2 = get_sidra(api='/t/1419/n1/all/v/63,66/p/all/c315/7170,7445,7486,7558,7625,7660,7712,7766,7786/d/v63%202,v66%204')
tab3 = get_sidra(api='/t/7060/n1/all/v/63,66/p/all/c315/7170,7445,7486,7558,7625,7660,7712,7766,7786/d/v63%202,v66%204')

series = c(7170, 7445, 7486, 7558, 7625, 7660,
7712, 7766, 7786)

names = c('Alimentos', 'Habitação', 'Art de Resid',
'Vestuário', 'Transporte', 'Saúde e cuid pessoais',
'Despesas Pessoas', 'Educação', 'Comunicação')

var1 <- matrix(NA, ncol=length(series),
nrow=nrow(tab1)/length(series)/2)

peso1 <- matrix(NA, ncol=length(series),
nrow=nrow(tab1)/length(series)/2)

var2 <- matrix(NA, ncol=length(series),
nrow=nrow(tab2)/length(series)/2)

peso2 <- matrix(NA, ncol=length(series),
nrow=nrow(tab2)/length(series)/2)

var3 <- matrix(NA, ncol=length(series),
nrow=nrow(tab3)/length(series)/2)

peso3 <- matrix(NA, ncol=length(series),
nrow=nrow(tab3)/length(series)/2)

for(i in 1:length(series)){

var1[,i] <- tab1Valor[tab1`Variável (Código)`==63&
tab1`Geral, grupo, subgrupo, item e subitem (Código)`==series[i]]  var2[,i] <- tab2Valor[tab2`Variável (Código)`==63& tab2`Geral, grupo, subgrupo, item e subitem (Código)`==series[i]]

var3[,i] <- tab3Valor[tab3`Variável (Código)`==63&
tab3`Geral, grupo, subgrupo, item e subitem (Código)`==series[i]]  peso1[,i] <- tab1Valor[tab1`Variável (Código)`==66& tab1`Geral, grupo, subgrupo, item e subitem (Código)`==series[i]]

peso2[,i] <- tab2Valor[tab2`Variável (Código)`==66&
tab2`Geral, grupo, subgrupo, item e subitem (Código)`==series[i]]  peso3[,i] <- tab3Valor[tab3`Variável (Código)`==66& tab3`Geral, grupo, subgrupo, item e subitem (Código)`==series[i]]
}

variacao = ts(rbind(var1, var2, var3), start=c(2006,07), freq=12)
peso = ts(rbind(peso1, peso2, peso3), start=c(2006,07), freq=12)

Assim, a inflação medida pelo IPCA nada mais será do que a variação vezes o respectivo peso do grupo. Com isso em mente, nós podemos gerar a previsão para cada grupo e depois recuperar a previsão da inflação cheia a partir dessas previsões individuais. O resultado é exposto no gráfico abaixo.

A previsão para a inflação em janeiro, por essa metodologia, é de 0,47%.

________________

(*) Para aprender a fazer esse tipo de projeção, veja nossos cursos de Previsão Macroeconométrica e Modelos Preditivos aplicados à Macroeconomia.

(**) Os códigos completos do exercício estão disponíveis no Clube AM.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Análise de Criptomoedas com Python

Aprenda a estruturar um pipeline de dados financeiros com Python. Ensinamos a construção de um dashboard automatizado para coleta, tratamento e visualização de criptomoedas via API.

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.