Coletando dados do SIDRA com o Python

O SIDRA (Sistema IBGE de Recuperação Automática) é uma plataforma do IBGE criada com o objetivo de consultar as pesquisas criados e disponibilizadas pelo Instituto. A interface permite que sejam acessado através de API's informações e dados sobre indicadores importantes. O objetivo do post de hoje será mostrar como é possível acessar estes dados utilizando o Python, utilizando a série do PIB como exemplo.

A API do SIDRA permite a extração dos dados disponibilizados. Por sorte, existe o {sidrapy} que permite acessar facilmente estes dados e realizar a importação direta para a linguagem.

Apesar de mais ser mais facilitado do que retirar diretamente da API do SIDRA, é necessário alguns conhecimentos de uso da biblioteca e o posterior tratamento de dados. Nosso objetivo neste post será de elencar os procedimento necessário, bem como ensinar como realizar a limpeza.

sidrapy

A biblioteca oferece uma única função, get_table(), que permite através de seus argumentos especificar a série e seus parâmetros para a importação.

Os diferente tipos de parâmetros definem a tabela e suas dimensões (períodos, variáveis, unidades territoriais e classificações/categorias). Iremos elencar a baixo cada parâmetro, como obter e onde se insere na função (para mais observações ver a página de ajuda da API do SIDRA).

  • t (table_code) - é o código da tabela referente ao indicador e a pesquisa;
  • p (period) - utilizado para especificar o período;
  • v (variable) - para especificar as variáveis desejadas;
  • n (territorial_level) - especifica os níveis territoriais;
  • n/ (ibge_territorial_code) - inserido dentro do nível territorial, especificar o código territorial do IBGE;
  • c/ (classification/categories) - especifica as classificações da tabela e suas respectivas categorias.

Para obter a tabela e os códigos, o primeiro passo será entrar na interface do SIDRA e buscar a pesquisa/indicador de interesse através do site e em seu buscador https://sidra.ibge.gov.br/home/

Escolhemos como exemplo a série do PIB sem ajuste sazonal e com ajuste sazonal, referente a tabela 1620 e 1621, respectivamente, que se trata da série das Contas Nacionais Trimestrais.

Através da interface, selecionamos a variável "Série encadeada do índice de volume trimestral (Base: média 1995 = 100) (Número índice)"; Setores e subsetores (categorias) "PIB a preços de mercado"; Trimestre (período) - todo o período; Unidade Territorial "Brasil".

Com efeito, será gerado os parâmetros para API no quadro de links (localizado ao fim da página). No caso da tabela 1620, foi produzido a seguinte API: https://apisidra.ibge.gov.br/values/t/1620/n1/all/v/all/p/all/c11255/90707/d/v583%202

 

O que nos interessa, entretanto, serão os códigos posteriores a /t/, sendo representados pelos parâmetros necessários para utilizar a função get_table() do {sidrapy} de acordo com os caracteres do parâmetros listados acima.

/t/1620/n1/all/v/all/p/all/c11255/90707/d/v583%202

Sendo assim, temos que:

  • t (table_code) = 1620
  • n (territorial_level) = 1
  • n/ (ibge_territorial_code) = all
  • v (variable) = all
  • p (period) = all
  • c/ (categories) = 11255/90707

PIB sem ajuste sazonal

Abaixo, mostraremos como é possível retirar os dados com o get_table() utilizando os parâmetros acima. Veja como cada argumento se insere no contexto de cada parâmetro.

Após a importação, vemos que o dados não estão da forma que gostaríamos, sendo necessário, portanto, a realização de uma limpeza.

O primeiro passo será alterar o nomes da colunas com os nomes da primeira observação, e retirar estes dados do data frame. Também é necessário alterar o tipo de dados da coluna "Valor" para float.

Devemos então alterar os nomes das colunas de interesse e remover o restante das colunas. Deixemos as variáveis que representam o valor da série e o código do trimestre.

Através de uma inspeção no data frame, vemos que a coluna de trimestre está em formato de ano e trimestre numérico (199601, 199602...), devemos realizar um procedimento para que o Python reconheça esta coluna como data.

Para lidar com isto, removemos da coluna o valor numérico referente ao trimestre e alteramos para um valor que se aproxime de um mês relacionado em período de trimestres. Juntamos novamente com o ano em uma nova coluna.

Por fim, utilizamos a função to_datetime() para transformar em formato de data e inserir dentro do índice.

PIB com ajuste sazonal

Realizamos os mesmo procedimento utilizando a tabela 1620 referente ao PIB com ajuste Sazonal.

Criar o gráfico

Por fim, com os dados devidamente tratados, criamos um gráfico de ambas as séries. Antes, porém, iremos unir os data frames e o manipular para o formato long de forma que facilite o uso da função lineplot().

Quer saber mais?

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O papel da credibilidade do Banco Central na desinflação da economia

O objetivo deste trabalho é mensurar a credibilidade da política monetária brasileira através de diferentes métricas e verificar empiricamente se uma maior credibilidade contribui para a redução da inflação. Realizamos a modelagem econométrica usando o pacote {systemfit} disponível na linguagem. Ao fim, criamos um relatório reprodutível com a combinação Quarto + R.

Análise de Criptomoedas com Python

Aprenda a estruturar um pipeline de dados financeiros com Python. Ensinamos a construção de um dashboard automatizado para coleta, tratamento e visualização de criptomoedas via API.

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.