Coletando dados do PIB com o R

O Produto Interno Bruto é o principal indicador para acompanhamento do nível de atividade no Brasil, medindo a soma final de todos os bens e serviços produzidos no país. Os dados do PIB podem ser acessados através do Sidra, sendo importados facilmente com o R através do pacote {sidrar}.  Mostramos no post de hoje como é possível extrair automaticamente e de forma totalmente reprodutível os dados do PIB da plataforma do Sidra utilizando o R.

O primeiro passo será carregar o pacote {sidrar}, que oferecerá a possibilidade de acessar a API do indicador obtido através do Sidra. Também carregamos o {tidyverse} para que possamos realizar limpezas nos dados.


Em seguida, com a API do indicador, utilizaremos a função sidrar::get_sidra() para obter os dados do indicador direto no R.

Por fim, realizamos algumas limpeza de forma que possamos trabalhar com os dados.

Agora temos em mãos a série do PIB com ajuste sazonal totalmente limpa para que possamos trabalhar!

________________________________________

Quer saber mais?

Veja nossos cursos de Macroeconomia através da nossa trilha de Macroeconomia Aplicada.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como avaliar modelos de IA na previsão macroeconômica?

Descubra como economistas e cientistas de dados estão combinando econometria e inteligência artificial para aprimorar previsões macroeconômicas. Neste post, você vai entender as principais etapas de avaliação de modelos — da preparação dos dados à validação cruzada — e conhecer as métricas e técnicas que revelam quais métodos realmente entregam as melhores previsões. Uma leitura essencial para quem quer compreender o futuro da análise econômica orientada por dados.

Análise exploratória e seleção de séries temporais econômicas para modelagem

Quer entender como transformar dados econômicos brutos em previsões macroeconômicas precisas? Neste post, mostramos passo a passo como realizar a análise exploratória e seleção de séries temporais com Python — desde o tratamento de dados e remoção de multicolinearidade até a escolha das variáveis mais relevantes usando técnicas de machine learning e econometria. Um guia essencial para quem quer unir teoria econômica e inteligência artificial na prática da previsão macroeconômica.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.