Exercício: quebra estrutural no mercado de trabalho?

correlaçãoNo artigo dessa semana - que publico aqui em breve - trato a questão do desemprego. A ideia é prever a taxa de desemprego para o restante de 2014, levando em consideração trajetórias para a população ocupada e para a população economicamente ativa. Só passei por aqui hoje para deixar um exercício interessante que tenho feito nas últimas semanas. Haveria uma quebra estrutural no jeito de entender o mercado de trabalho brasileiro? Em outras palavras, se antes de 2009 era verdade que menor crescimento (menor geração de vagas) estava correlacionado com o aumento do desemprego, hoje não necessariamentePara interessados em mercado de trabalho, deixo dois gráficos. O ao lado é a correlação acumulada a cada nova observação entre o saldo de admitidos e demitidos do Cadastro Geral de Empregados e Desempregados (CAGED/Ministério do Trabalho) e o desemprego dessazonalizado. O gráfico abaixo mostra o comportamento das duas séries: do saldo do CAGED e do desemprego.

saldocaged

Antes de 2009 a correlação entre elas era forte: reduções na geração líquida de vagas estavam correlacionadas a aumentos de desemprego. Hoje, não necessariamente. Um estudo do Bradesco no ano passado, por exemplo, estimava que abaixo de 50 mil vagas no CAGED havia pressão para o aumento do desemprego. Neste há a aproximação da metodologia do CAGED à PME, verificando causalidade entre CAGED e a PME. Hoje esse número de 50 mil é provavelmente menor. Sendo assim, fica a pergunta e o exercício: por quê? O que causou essa redução da correlação entre geração de vagas no CAGED e desemprego? Além disso, a correlação acima significa causalidade? Como mostrar? 

Update: na primeira versão do post estava com pressa e acabei esquecendo de colocar que a causalidade no sentido de Granger é entre a média móvel de 12 meses do SALDO_CAGED e a primeira diferença do Desemprego_PME dessazonalizado, entre duas e três defasagens, para o período de jan/2003 a mar/2014. Isto porque, a série de desemprego é I(1), enquanto o saldo do CAGED é I(0), pelos testes normais de raiz unitária. Agradeço ao Claudio Shikida por notar a "olho nu" a não-estacionariedade da série de desemprego.   

ps: quem quiser o arquivo do eviews, mandar e-mail para macroeconomia@vitorwilher.com.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Previsões do Boletim Focus em Anos Eleitorais

Eleições são momentos de incerteza, mas os dados do Boletim Focus mostram que nem toda incerteza é igual. Ao analisar as previsões de inflação, juros e câmbio nos anos que antecederam as eleições de 2014, 2018 e 2022, este post investiga como o mercado revisa cenários macroeconômicos ao longo do tempo.

Como Medir o Ciclo das Concessões de Crédito usando Python

Este exercício apresenta uma análise quantitativa da relação entre o ciclo de concessões de crédito, a atividade econômica e a política monetária no Brasil. Utilizando a linguagem Python, o estudo aplica técnicas de decomposição de séries temporais (X13-ARIMA e Filtro HP) para isolar os componentes cíclicos dos dados. Os resultados da modelagem econométrica confirmam a pró ciclicidade do crédito em relação ao hiato do produto e sua sensibilidade às variações no hiato da taxa de juros real.

Choque de juros e renda em bens duráveis e não duráveis usando Python

Este artigo analisa a dinâmica do consumo no Brasil utilizando Python e modelos de Vetores Autorregressivos (VAR). Ao segregar bens duráveis e não duráveis, o estudo quantifica a sensibilidade a choques de juros e renda. Criamos todo o processo através do ciclo de dados: coleta, tratamento, análise de dados, modelagem e apresentação dos resultados, tudo automatizado usando a linguagem Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.