Exercício: quebra estrutural no mercado de trabalho?

correlaçãoNo artigo dessa semana - que publico aqui em breve - trato a questão do desemprego. A ideia é prever a taxa de desemprego para o restante de 2014, levando em consideração trajetórias para a população ocupada e para a população economicamente ativa. Só passei por aqui hoje para deixar um exercício interessante que tenho feito nas últimas semanas. Haveria uma quebra estrutural no jeito de entender o mercado de trabalho brasileiro? Em outras palavras, se antes de 2009 era verdade que menor crescimento (menor geração de vagas) estava correlacionado com o aumento do desemprego, hoje não necessariamentePara interessados em mercado de trabalho, deixo dois gráficos. O ao lado é a correlação acumulada a cada nova observação entre o saldo de admitidos e demitidos do Cadastro Geral de Empregados e Desempregados (CAGED/Ministério do Trabalho) e o desemprego dessazonalizado. O gráfico abaixo mostra o comportamento das duas séries: do saldo do CAGED e do desemprego.

saldocaged

Antes de 2009 a correlação entre elas era forte: reduções na geração líquida de vagas estavam correlacionadas a aumentos de desemprego. Hoje, não necessariamente. Um estudo do Bradesco no ano passado, por exemplo, estimava que abaixo de 50 mil vagas no CAGED havia pressão para o aumento do desemprego. Neste há a aproximação da metodologia do CAGED à PME, verificando causalidade entre CAGED e a PME. Hoje esse número de 50 mil é provavelmente menor. Sendo assim, fica a pergunta e o exercício: por quê? O que causou essa redução da correlação entre geração de vagas no CAGED e desemprego? Além disso, a correlação acima significa causalidade? Como mostrar? 

Update: na primeira versão do post estava com pressa e acabei esquecendo de colocar que a causalidade no sentido de Granger é entre a média móvel de 12 meses do SALDO_CAGED e a primeira diferença do Desemprego_PME dessazonalizado, entre duas e três defasagens, para o período de jan/2003 a mar/2014. Isto porque, a série de desemprego é I(1), enquanto o saldo do CAGED é I(0), pelos testes normais de raiz unitária. Agradeço ao Claudio Shikida por notar a "olho nu" a não-estacionariedade da série de desemprego.   

ps: quem quiser o arquivo do eviews, mandar e-mail para macroeconomia@vitorwilher.com.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Regimes da Política Monetária Brasileira com Markov Switching no Python

Este exercício analisa a política monetária brasileira utilizando modelos de Markov Switching Regression. O objetivo é identificar diferentes regimes de política monetária e como eles influenciam a taxa Selic, a meta de inflação e o hiato do produto. Usamos a linguagem de programação Python para o processo de coleta, tratamento, análise e modelagem dos dados.

Como criar janelas móveis de séries temporais usando o Python

Janelas Móveis/Deslizantes, ou Rolling Windows, são termos frequentes na análise de séries temporais. Mas o que são e como aplicá-las no Python? Neste tutorial, mostramos como essa ferramenta é essencial para a análise de dados utilizando como exemplo a correlação móvel de ações brasileiras.

Como incorporar choques em cenários de previsão?

Neste exercício mostramos como incorar choques no cenário de variáveis exógenas para fins de previsão. Usando como exemplo a previsão do IPCA, através de um modelo de machine learning, mostramos os cuidados a serem tomados e uma forma simples de definir o cenário com os choques. Ao final, apresentamos uma previsão com um suposto choque e uma previsão sem o choque para comparação.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.