Dados alternativos em Macroeconomia

Comumente, ao analisar dados Macroeconômicos, nos preocupamos em utilizar dados de estatísticas oficiais, entretanto, é possível obter insights utilizando outros tipos de dados, como é o caso dos dados alternativos. Um tipo de dado alternativo interessante é obtido através do relatório de mobilidade da comunidade do Google. No post de hoje, vamos analisar os dados deste relatório utilizando o R.

Dados alternativos são dados não tradicionais que fornecem informações úteis para determinada área. No caso do relatório de mobilidade do google (mobility trends), é possível obter informações dos locais de maior mobilidade da população de uma região ou país.

Com a devida análise do mobility trends, podemos saber os setores que estão recebendo maior número de deslocamento, tais como varejo e lazer, mercados e farmácias, parques, estações de transporte público, locais de trabalho e áreas residenciais. Logo, as informações podemos construir formas de capturar os possíveis volumes de venda de determinado setor no curto prazo.

Vamos realizar uma análise do mobility trend do google utilizando o pacote {covid19mobility}, disponível no repositório do Github do autor "covid19r/covid19mobility".

Uma vez instalado, utilizamos a função refresh_covid19mobility_google_country() para importar os dados do Google, que nos fornecerá o relatório para diversos países do mundo, bem como de todos os setores. Portanto, é necessário realizar os devidos filtros antes de realizar a análise

________________________________________

Quer saber mais?

Veja nossos cursos de Macroeconomia através da nossa trilha de Macroeconomia Aplicada.

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Previsões do Boletim Focus em Anos Eleitorais

Eleições são momentos de incerteza, mas os dados do Boletim Focus mostram que nem toda incerteza é igual. Ao analisar as previsões de inflação, juros e câmbio nos anos que antecederam as eleições de 2014, 2018 e 2022, este post investiga como o mercado revisa cenários macroeconômicos ao longo do tempo.

Como Medir o Ciclo das Concessões de Crédito usando Python

Este exercício apresenta uma análise quantitativa da relação entre o ciclo de concessões de crédito, a atividade econômica e a política monetária no Brasil. Utilizando a linguagem Python, o estudo aplica técnicas de decomposição de séries temporais (X13-ARIMA e Filtro HP) para isolar os componentes cíclicos dos dados. Os resultados da modelagem econométrica confirmam a pró ciclicidade do crédito em relação ao hiato do produto e sua sensibilidade às variações no hiato da taxa de juros real.

Choque de juros e renda em bens duráveis e não duráveis usando Python

Este artigo analisa a dinâmica do consumo no Brasil utilizando Python e modelos de Vetores Autorregressivos (VAR). Ao segregar bens duráveis e não duráveis, o estudo quantifica a sensibilidade a choques de juros e renda. Criamos todo o processo através do ciclo de dados: coleta, tratamento, análise de dados, modelagem e apresentação dos resultados, tudo automatizado usando a linguagem Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.