Método Monte Carlo com o Python

Métodos de Monte Carlo são algoritmos computacionais que se baseiam em amostras aleatórias de uma distribuição para obter resultados numéricos . No post de hoje vamos criar essa distribuição com base em dois parâmetros: média e desvio padrão dos retornos, de forma a obter o preço esperado de um ativo usando o Python.

# Importa as bibliotecas
import pandas as pd
import math
import numpy as np
import pandas_datareader.data as pdr
from matplotlib import pyplot as plt
!pip install yfinance --upgrade --no-cache-dir
import yfinance as yf
yf.pdr_override()

# Ativos
symbols = ['ITUB4.SA']
# Importa os preços
preco = pdr.get_data_yahoo(symbols)['Adj Close']
# Obtém o número de observações do tempo
tempo = (preco.index[-1] - preco.index[0]).days
# Média dos retornos
media_retorno = preco.pct_change().mean()
# Desvio padrão dos retornos
desvio_retorno = preco.pct_change().std()
# A partir dos inputs, iremos gerar os valores aleatórios da simulação
print ("Retorno esperado : ", str(round(media_retorno, 4)))
print ("Desvio padrão : ", str(round(desvio_retorno, 4)))



# Gera valores aleatório para 1 ano em dias úteis (252 dias) assumindo distribuição normal
retorno_diario_sim = np.random.normal(media_retorno, desvio_retorno, 252) + 1
# A partir do valores aleatórios futuros dos retornos, aplicamos no último valor do preço da ação
price_series = [preco[-1]]
for j in retorno_diario_sim:
    price_series.append(price_series[-1] * j)




plt.plot(price_series)



plt.figure(figsize = (15, 7))
# Cria várias simulações
numero_processos = 3000
precos_fechamento = []
for i in range(numero_processos):
    retorno_diario = np.random.normal(media_retorno, desvio_retorno, 252) + 1
    serie_precos = [preco[-1]]
    for j in retorno_diario:
        serie_precos.append(serie_precos[-1] * j)

    # anexa o último valor do preço
    precos_fechamento.append(serie_precos[-1])
    # plota
    plt.plot(serie_precos)
plt.show()
plt.figure(figsize = (15, 7))
# plota histograma
plt.hist(precos_fechamento,bins=40)



# Analisa o resultado médio de todos os preços simulados
media_final = round(np.mean(precos_fechamento),2)
print("Preço Esperado: ", str(media_final))

______________________________________

Quer saber mais?

Veja nosso curso de Python para Investimentos.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Econometria, ML ou IA para previsão da PMS?

Prever a Pesquisa Mensal de Serviços (PMS/IBGE) é um desafio por natureza: trata-se de uma série mensal, sujeita a volatilidade e choques que vão de fatores sazonais a mudanças estruturais no setor. Para enfrentar esse problema, realizamos um exercício de comparação entre três abordagens de modelagem: econometria tradicional (ARIMA), machine learning (XGBoost) e inteligência artificial (TimeGPT).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.