Como prever picos de demanda no python

Picos de demanda referem-se ao consumo excessivo em determinado períodos e usualmente exibem sazonalidades múltiplas, principalmente por serem séries temporais de baixa frequência. No post de hoje, iremos tentar prever o pico de demanda diária por energia elétrica no Brasil usando o Python por meio de uma combinação de um modelo MSTL e AutoArima.

O primeiro passo é capturar os dados de curva de energia horária, em MWmed, referente ao Consumo de Energia por meio do site da ONS. Realizamos o procedimento de forma manual, baixando o arquivo .csv. A seguir, importamos o arquivo no Python.

Vemos abaixo o gráfico da série em frequência horária do ínicio do ano de 2022 até 21/12/2022. É visível que há sazonalidade na série, e tomaremos essa sazonalidade com sendo a diária e a semanal.

Uma vez que temos a série, a tarefa será estimar os componentes (tendência e as sazonalidades) por meio de um MSTL e realizar o ajuste da tendência por meio de um AutoArima. O modelo é estimado usando Cross Validation. No resultado abaixo, vemos no mês de setembro os valores previstos e o valor real e podemos comparar ambos. Vemos que de fato o modelo não foi suficiente para estimar o pico de energia nos valores ajustados.

Para entender todo o processo listado acima, com os códigos e video-aula, faça parte do Clube AM, o repositório de código da Análise Macro, contendo exercícios semanais de R e Python.

________________________________________________

Quer se aprofundar no assunto?

Alunos da trilha de Ciência de dados para Economia e Finanças  possuem acesso o curso Analise de dados Macroeconômicos e Financeiros e podem aprender a como construir projetos que envolvem dados reais usando modelos econométricos e de Machine Learning com o R.

Referências
Hyndman, R.J., & Athanasopoulos, G. (2021) Forecasting: principles and practice, 3rd edition, OTexts: Melbourne, Australia. OTexts.com/fpp3.

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como criar Agentes de Economia com CrewAI

O CrewAI é uma biblioteca open source que permite criar times de agentes de IA atuando de forma colaborativa. Cada agente recebe um papel, um objetivo e um histórico contextual, tornando-o especializado para tarefas específicas. Na área de economia e finanças, isso possibilita montar equipes virtuais capazes de consultar dados do Banco Central, interpretar indicadores e gerar relatórios automáticos de forma eficiente.

Como criar Agentes de Economia com Google ADK

A inteligência artificial está evoluindo dos modelos que apenas respondem comandos para agentes capazes de agir, decidir e colaborar. O Agent Development Kit (ADK), do Google, surge como uma ferramenta para criar times de agentes, unindo LLMs a fluxos de trabalho bem definidos. Para economistas e cientistas de dados econômicos, isso abre espaço para automatizar rotinas complexas — como consultas em APIs e geração de relatórios — de maneira mais inteligente e autônoma.

Criando um dashboard das previsões do Relatório Focus

O Relatório Focus, divulgado semanalmente pelo Banco Central, reúne as expectativas do mercado para variáveis-chave da economia brasileira, como inflação, câmbio, PIB e Selic. Neste projeto, transformamos esses dados em um dashboard interativo para acompanhar a acurácia das previsões ao longo do tempo.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.