Como prever picos de demanda no python

Picos de demanda referem-se ao consumo excessivo em determinado períodos e usualmente exibem sazonalidades múltiplas, principalmente por serem séries temporais de baixa frequência. No post de hoje, iremos tentar prever o pico de demanda diária por energia elétrica no Brasil usando o Python por meio de uma combinação de um modelo MSTL e AutoArima.

O primeiro passo é capturar os dados de curva de energia horária, em MWmed, referente ao Consumo de Energia por meio do site da ONS. Realizamos o procedimento de forma manual, baixando o arquivo .csv. A seguir, importamos o arquivo no Python.

Vemos abaixo o gráfico da série em frequência horária do ínicio do ano de 2022 até 21/12/2022. É visível que há sazonalidade na série, e tomaremos essa sazonalidade com sendo a diária e a semanal.

Uma vez que temos a série, a tarefa será estimar os componentes (tendência e as sazonalidades) por meio de um MSTL e realizar o ajuste da tendência por meio de um AutoArima. O modelo é estimado usando Cross Validation. No resultado abaixo, vemos no mês de setembro os valores previstos e o valor real e podemos comparar ambos. Vemos que de fato o modelo não foi suficiente para estimar o pico de energia nos valores ajustados.

Para entender todo o processo listado acima, com os códigos e video-aula, faça parte do Clube AM, o repositório de código da Análise Macro, contendo exercícios semanais de R e Python.

________________________________________________

Quer se aprofundar no assunto?

Alunos da trilha de Ciência de dados para Economia e Finanças  possuem acesso o curso Analise de dados Macroeconômicos e Financeiros e podem aprender a como construir projetos que envolvem dados reais usando modelos econométricos e de Machine Learning com o R.

Referências
Hyndman, R.J., & Athanasopoulos, G. (2021) Forecasting: principles and practice, 3rd edition, OTexts: Melbourne, Australia. OTexts.com/fpp3.

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Análise de Criptomoedas com Python

Aprenda a estruturar um pipeline de dados financeiros com Python. Ensinamos a construção de um dashboard automatizado para coleta, tratamento e visualização de criptomoedas via API.

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.