Beta de mercado móvel com o Python

O Beta de mercado é um indicador que relaciona o risco de uma ação com o risco de mercado. Uma forma interessante de avaliar o coeficiente é através de seus valores ao longo do tempo, tomando com base janelas móveis de tamanho fixo. No post de hoje iremos mostrar como é possível obter o Beta de Mercado Móvel no Python.

O Beta de mercado, também chamado de coeficiente beta,  pode ser obtido através da seguinte equação:

     $$ r_{it} - Rf_{t} = \beta (Rm_{t} - Rf_{t})$$

Em que  r_{it} é o retorno do ativo i, Rf_{t} é o retorno da taxa de juros livre de risco e Rm_{t}, o retorno do índice de mercado, representando o risco sistemático. Através da equação, é possível obter o coeficiente beta, por meio de uma Regressão Linear via MQO.

A leitura do Beta permite entender o nível de relacionamento entre o ativo e o risco sistemático, isso é, a cada unidade de aumento do risco sistemático, o quanto os valores do ativo se movem.

  • Beta > 1 - A ação move-se em uma intensidade maior que a do mercado;
  • Beta < 1 - A ação move-se em uma intensidade menor que a do mercado;
  • Beta = 1 - A ação move-se igual ao índice de mercado;
  • Beta < 0 - A ação move-se em direção contrária ao índice de mercado.

Para capturar a dinâmica de mudança do mercado e do ativo ao longo do tempo, uma regressão móvel pode ser útil para entender momentos em que a ação é mais ou menos sensível ao risco de mercado. Portanto, é possível construir o gráfico abaixo, que mede o Beta (em azul) ao longo do tempo e os seus respectivos intervalos de confiança.

Para construir o gráfico, foi definido:

A construção de todos os procedimentos para a criação dos gráficos abaixo você pode obter fazendo parte do Clube AM, o repositório especial de códigos da Análise Macro.
  • Foi capturado os preços de fechamento da PETR4 e da IBOVESPA utilizando o Yahoo Finance como fonte.
  • Calculou-se o retorno líquido simples
  • Foi importado os dados da Selic por meio do código 4390, usando o python-bcb

Obteve-se a regressão móvel usando a biblioteca statsmodels. Como resultado, obteve-se o gráfico abaixo.


_____________________________________

Quer saber mais?

Veja nossa trilha de cursos de Finanças Quantitativas.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Análise de Dados com REPL Tool e LLM usando LangGraph

Neste post, vamos mostrar como você pode criar um agente que interpreta e executa código Python em tempo real, utilizando o REPL-Tool e um LLM da família Gemini. Começamos com um exemplo genérico e, em seguida, aplicamos a mesma estrutura à análise econômica de uma série histórica do IPCA.

Frameworks para criar AI Agents

Neste post, vamos dar o primeiro passo rumo à construção de Agentes de IA mais sofisticados, capazes de tomar decisões, interagir com ferramentas externas e lidar com tarefas complexas. Para isso, precisamos entender o papel dos frameworks agenticos (ou agentic frameworks) e como eles podem facilitar esse processo. Aqui introduzimos dois frameworks populares de desenvolvimento de Agentes de IA.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.