Construindo um Dashboard de medidas de Desvio-Padrão no Python

Vamos continuar a série de postagens sobre como construir um Dashboard de métricas relacionadas a avaliação de ações e construção de um Portfolio de investimentos no Python. Trazemos nessa semana um componente importante para avaliação do risco: o cálculo do Desvio Padrão.

Desvio Padrão como medida de Volatilidade

A volatilidade é uma medida de risco que indica o grau de variação dos retornos de um ativo ou portfolio em relação à sua média. Para calcular a volatilidade de um ativo individual, utilizamos a seguinte fórmula:
σ = √(∑(ri - r)^2 / (n - 1))

Onde σ é a volatilidade, ri é o retorno do ativo no período i, r é a média dos retornos e n é o número de observações.

Já para calcular a volatilidade de um portfolio, a fórmula é um pouco mais complexa e leva em conta as volatilidades dos ativos individuais e suas correlações. A fórmula geral é dada por:

σp = √(w1^2σ1^2 + w2^2σ2^2 + 2w1w2σ1σ2ρ12 + ... + 2w1wnσ1σnρ1n + ... + w2n^2σn^2)

Onde σp é a volatilidade do portfolio, σi é a volatilidade do ativo i, wi é o peso do ativo i no portfolio e ρij é a correlação entre os retornos dos ativos i e j.

Vale destacar a volatilidade permite avaliar o quão arriscado um ativo é ao longo do tempo, portanto, a criação de métricas para a sua avaliação é extremamente importante para aqueles que desejam realizar a gestão do risco de uma carteira.

Para facilitar todo o trabalho de verificar essas métricas, é possível criar um Dashboard, que automatiza todo o processo de coleta, tratamento, criação das métricas e a visualização de dado. No Dashboard abaixo, o processo de coleta de dados financeiros foi feito por meio da biblioteca yfinance. O Dashboard é construído no ambiente da biblioteca Shiny e os gráficos construídos por meio do Plotly.

Para obter o código do Dashboard abaixo, faça parte do Clube AM, o repositório de códigos da Análise Macro, contendo exercícios semanais de R e Python.

Veja que no Dashboard é possível inserir o ativo que se deseja, o peso relativo no Portfólio do ativo, a data inicial da amostra, e o tamanho da janela da amostra.

_____________________

Quer saber mais?

Veja nossa trilha de cursos de Finanças Quantitativas

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Tratamento e transformação de séries temporais macroeconômicas para modelagem

"Garbage in, garbage out" é a regra de ouro na previsão macroeconômica. Antes de aplicar qualquer modelo de IA ou econometria para prever indicadores como o IPCA ou o PIB, existe um trabalho crucial de tratamento de dados. Neste post, abrimos os bastidores do nosso dashboard de previsões e mostramos o passo a passo para transformar dados brutos de múltiplas fontes (como BCB, IBGE e FRED) em séries prontas para modelagem. Veja como lidamos com diferentes frequências, aplicamos transformações e usamos metadados para criar um pipeline de dados robusto e automatizado.

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.