Criando um Dashboard de Índices de Sharpe no Python

Vamos continuar a série de postagens sobre como construir um Dashboard de métricas relacionadas a avaliação de ações e construção de um Portfolio de investimentos no Python. Trazemos nessa semana um componente importante para avaliação do risco: o cálculo do Índice de Sharpe.

Definindo o Sharpe

Cálculo do Índice de Sharpe

O Índice de Sharpe pode ser desmembrado em dois tipos: ex post e ex ante, isto é, a medida que tem como base comparar investimentos no passado, e aquela que tem como objetivo comparar investimentos de forma prospectiva, respectivamente.

As implementações práticas usam resultados ex post, enquanto as discussões teóricas focam em valores ex ante. Implícita ou explicitamente, assume-se que os resultados históricos têm pelo menos alguma capacidade preditiva, apostando que o que é visto no passado, ocorrerá no futuro.

Abaixo citamos como é possível calcular ambos os tipos, entretanto, como exemplo, criaremos somente o ex post no Python.

Ex ante

Para o cálculo ex ante, temos que  R_i seja o retorno projetado do investimento i e  R_f seja o retorno projetado do benchmark ou taxa de juros livre de risco. Os tildes na equação abaixo significam que não é conhecido com certeza os valores, portanto, chamados de retornos esperados. Definimos  \tilde{d} como o retorno diferencial.

\tilde{d} = \tilde{R_i} - \tilde{R_f}

\tilde{d} será o valor esperado de d e \sigma_d   será o valor previsto do desvio padrão, portanto, o índice de Sharpe será

 S = \frac{\tilde{d}}{\sigma_d}

Nessa versão, o Sharpe indica o diferencial do retorno esperado por unidades de risco associado ao retorno diferencial.

Ex post

Para o ex post, considere  R_{it}  o retorno do investimento i no tempo t, e  R_{ft}   o retorno do benchmark ou taxa de juros livre de risco no período t e  D_t o diferencial de retorno no período t.

 $D_t = R_it - R_ft

Calculamos a média de  D_t obtendo  \bar{D} , que será o valor médio de D no período t=1 até T, e também o desvio padrão de  D_t .

Com isso, o índice de Sharpe ex post será

 S_h = \frac{D}{\sigma_D}

Para tornar fácil a comparação de diferentes investimentos em diferentes janelas de tempo, é aconselhável utilizar o índice de Sharpe anualizado, obtido por meio do seguinte cálculo:

 S_T = \sqrt{T} S_t

Em que T é o período para anualizar, e que pode tomar o valor de 252 dias para dados diários e 12 meses para dados mensais.

Para obter o código do Dashboard abaixo, faça parte do Clube AM, o repositório de códigos da Análise Macro, contendo exercícios semanais de R e Python.

Dashboard de Índice de Sharpe

Para facilitar todo o trabalho de verificar essas métricas, é possível criar um Dashboard, que automatiza todo o processo de coleta, tratamento, criação das métricas e a visualização de dado. No Dashboard abaixo, o processo de coleta de dados financeiros foi feito por meio da biblioteca yfinance. O Dashboard é construído no ambiente da biblioteca Shiny e os gráficos construídos por meio do Plotly.

_____________________

Quer saber mais?

Veja nossa trilha de cursos de Finanças Quantitativas

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Previsões do Boletim Focus em Anos Eleitorais

Eleições são momentos de incerteza, mas os dados do Boletim Focus mostram que nem toda incerteza é igual. Ao analisar as previsões de inflação, juros e câmbio nos anos que antecederam as eleições de 2014, 2018 e 2022, este post investiga como o mercado revisa cenários macroeconômicos ao longo do tempo.

Como Medir o Ciclo das Concessões de Crédito usando Python

Este exercício apresenta uma análise quantitativa da relação entre o ciclo de concessões de crédito, a atividade econômica e a política monetária no Brasil. Utilizando a linguagem Python, o estudo aplica técnicas de decomposição de séries temporais (X13-ARIMA e Filtro HP) para isolar os componentes cíclicos dos dados. Os resultados da modelagem econométrica confirmam a pró ciclicidade do crédito em relação ao hiato do produto e sua sensibilidade às variações no hiato da taxa de juros real.

Choque de juros e renda em bens duráveis e não duráveis usando Python

Este artigo analisa a dinâmica do consumo no Brasil utilizando Python e modelos de Vetores Autorregressivos (VAR). Ao segregar bens duráveis e não duráveis, o estudo quantifica a sensibilidade a choques de juros e renda. Criamos todo o processo através do ciclo de dados: coleta, tratamento, análise de dados, modelagem e apresentação dos resultados, tudo automatizado usando a linguagem Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.