Dashboard do Modelo CAPM no Python

Vamos continuar a série de postagens sobre como construir um Dashboard de métricas relacionadas a avaliação de ações e construção de um Portfolio de investimentos no Python. Trazemos nessa semana um componente importante para avaliação do risco: Capital Asset Pricing Model (CAPM).

O que é o CAPM?

O CAPM (Capital Asset Pricing Model) é um modelo financeiro utilizado para estimar o retorno esperado de um ativo financeiro. Ele foi desenvolvido com base na ideia de que o retorno de um ativo financeiro é composto por dois componentes: o retorno livre de risco e o prêmio de risco.

O retorno livre de risco é o retorno que um investidor pode obter sem correr risco algum, geralmente associado a investimentos em títulos públicos. O prêmio de risco, por sua vez, é a compensação que um investidor deve receber para correr o risco de investir em um ativo financeiro mais arriscado, como ações.

O CAPM utiliza a relação entre o risco e o retorno para determinar o retorno esperado de um ativo financeiro. Ele assume que o risco de um ativo pode ser medido pelo seu beta, que é uma medida de volatilidade relativa do ativo em relação ao mercado.

De acordo com o CAPM, o retorno esperado de um ativo financeiro é igual ao retorno livre de risco mais um prêmio de risco proporcional ao seu beta. Esse prêmio de risco é calculado multiplicando o beta do ativo pela diferença entre o retorno esperado do mercado (ou retorno da carteira de mercado) e o retorno livre de risco.

Estimando o CAPM

Com o retorno da carteira de mercado representando o risco sistemático, chega-se a conclusão de que as variações do portfólio de mercado representaria um fator importante na variação do retorno de uma ação. Para tanto, na formulação do CAPM foi levado em conta o quanto estes retornos se relacionam, representado pelo Beta de mercado, formando então a seguinte equação calculada através de uma Regressão Linear via MQO:

     $$r_{i,t} -r_{f,t} = \alpha_i + \beta_i (r_{m,t} - r_{f,t}) + \varepsilon_{i,t}$$

em que r_{i,t} -r_{f,t} representa o excesso de retorno de um ativo, dado pela subtração do retorno do ativo em relação ao retorno da taxa de juros livre de risco. r_{m,t} - r_{f,t} o excesso de retorno do portfolio de mercado, sendo representado pela diferença do retorno de mercado e do retorno da taxa de juros livre de risco. \beta_i é o coeficiente da regressão que demonstrará o efeito da variação do excesso de retorno do mercado no excesso de retorno do ativo. \varepsilon_{i,t} é o erro da regressão.

O objetivo então é obter as taxas de retorno do ativo, do portfólio de mercado  e da taxa de juros livre de risco e estimar o Beta de mercado (coeficiente de regressão) .

Dashboard do Modelo CAPM no Python

Para facilitar todo o trabalho de estimar o CAPM, é possível criar um Dashboard, que automatiza todo o processo de coleta, tratamento, e a visualização de dados. No Dashboard abaixo, o processo de coleta de dados financeiros foi feito por meio da biblioteca yfinance. O Dashboard é construído no ambiente da biblioteca Shiny e os gráficos construídos por meio do Plotly.

Para acessar o Dashboard construído pela Análise Macro, acesse-o pelo seguinte link: Dashboard do Modelo CAPM no Python

_____________________

Quer saber mais?

Veja nossa trilha de cursos de Finanças Quantitativas

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Tratamento e transformação de séries temporais macroeconômicas para modelagem

"Garbage in, garbage out" é a regra de ouro na previsão macroeconômica. Antes de aplicar qualquer modelo de IA ou econometria para prever indicadores como o IPCA ou o PIB, existe um trabalho crucial de tratamento de dados. Neste post, abrimos os bastidores do nosso dashboard de previsões e mostramos o passo a passo para transformar dados brutos de múltiplas fontes (como BCB, IBGE e FRED) em séries prontas para modelagem. Veja como lidamos com diferentes frequências, aplicamos transformações e usamos metadados para criar um pipeline de dados robusto e automatizado.

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.