Aplicações de Modelos de Volatilidade: Covariância Dinâmica usando GARCH

Os efeitos GARCH na volatilidade levam a uma variabilidade no tempo dos retornos. Essa variação no tempo tem um impacto direto na relação entre os retornos de dois ativos. Quando sua variância varia com o tempo, também sua covariância muda com o tempo. Portanto, é de interesse modelar essa dinâmica com o objetivo de conhecer a relação de dois ativos no tempo. Vamos realizar esse exercício utilizando o R e o Python como ferramentas.

Introdução

A covariância é uma ferramenta estatística usada para determinar a relação de movimento entre duas variáveis. Em finanças, as variáveis ​​podem ser retornos de preço de diferentes ativos. Uma covariância positiva significa que os preços de dois ativos tendem a se mover na mesma direção.  Uma covariância negativa significa que os preços dos ativos tendem a se mover na direção oposta.

Covariância Dinâmica com o GARCH

O modelo GARCH leva em consideração a variabilidade das características da volatilidade no tempo. A covariância dinâmica pode ser calculada multiplicando o coeficiente de correlação entre os retornos dos ativos por sua volatilidade a partir dos modelos GARCH. Para tanto, prosseguimos com quatro passos:

Para obter todo o código em R e Python para os exemplos abaixo, faça parte do Clube AM, o repositório de códigos da Análise Macro, contendo exercícios semanais.

1° passo

Ajustamos um modelo GARCH para os retornos de cada ativo e obtemos a volatilidade.

2° passo

Computa os resíduos padronizados do ajuste do modelo GARCH (as inovações \hat{a_{i,t}} divididas pela raiz da volatilidade estimada \sqrt{\hat{\sigma_{i,t}}})

3° passo

Calcula o coeficiente de correlação amostral simples entre os resíduos padronizados.

4° passo

Multiplica o coeficiente de correlação amostral simples dos ativos pelas volatilidades dos ativos.

    \[Cov_{t} = \rho \times \sigma_{1,t} \times \sigma_{2,t}\]

Exemplo

Vamos estimar a Covariância Dinâmica entre os retornos de duas ações: ITUB4 e MGLU3. Empregaremos o GARCH(1,1) obteremos a volatilidade e os resíduos padronizados estimados, calculamos a correlação entre os resíduos e obtemos a covariância dinâmica.

O gráfico abaixo expõe o valor da medida no tempo:

R

Python

_____________________

Quer saber mais?

Veja nossa trilha de cursos de Finanças Quantitativas

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar Modelos de Linguagem no R com o pacote {elmer}

Na análise de dados contemporânea, o uso de Modelos de Linguagem (LLMs) vem se consolidando como uma ferramenta poderosa para automatizar e aprimorar tarefas analíticas. Ao integrarmos LLMs a pacotes como o ellmer, podemos ampliar nossas capacidades de extração, interpretação e automação de dados no ambiente R. Neste post, exploramos o papel desses modelos e detalhamos como o ellmer opera dentro do universo da linguagem de programação R.

Introdução ao AutoGen: Agentes Inteligentes na Análise Financeira

O AutoGen é um framework da Microsoft que permite criar agentes de IA colaborativos. Na área financeira, pode automatizar a coleta de dados, cálculos de indicadores e geração de relatórios. Este artigo apresenta os conceitos básicos e um exemplo aplicado a ações de empresas.

Como usar LangGraph e LLMs para prever a inflação no Brasil

Este post apresenta um estudo de caso sobre como utilizar o LangGraph e modelos de linguagem para estruturar um sistema multiagente voltado à previsão do IPCA. O exercício cria um sistema que utiliza-se de personas analíticas que trabalham em paralelo, permitindo validar previsões, calcular métricas de erro e consolidar relatórios automatizados. A abordagem demonstra como fluxos multiagentes podem apoiar a análise econômica, oferecendo múltiplas perspectivas e maior consistência nos resultados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.