Aplicações de Modelos de Volatilidade: Covariância Dinâmica usando GARCH

Os efeitos GARCH na volatilidade levam a uma variabilidade no tempo dos retornos. Essa variação no tempo tem um impacto direto na relação entre os retornos de dois ativos. Quando sua variância varia com o tempo, também sua covariância muda com o tempo. Portanto, é de interesse modelar essa dinâmica com o objetivo de conhecer a relação de dois ativos no tempo. Vamos realizar esse exercício utilizando o R e o Python como ferramentas.

Introdução

A covariância é uma ferramenta estatística usada para determinar a relação de movimento entre duas variáveis. Em finanças, as variáveis ​​podem ser retornos de preço de diferentes ativos. Uma covariância positiva significa que os preços de dois ativos tendem a se mover na mesma direção.  Uma covariância negativa significa que os preços dos ativos tendem a se mover na direção oposta.

Covariância Dinâmica com o GARCH

O modelo GARCH leva em consideração a variabilidade das características da volatilidade no tempo. A covariância dinâmica pode ser calculada multiplicando o coeficiente de correlação entre os retornos dos ativos por sua volatilidade a partir dos modelos GARCH. Para tanto, prosseguimos com quatro passos:

Para obter todo o código em R e Python para os exemplos abaixo, faça parte do Clube AM, o repositório de códigos da Análise Macro, contendo exercícios semanais.

1° passo

Ajustamos um modelo GARCH para os retornos de cada ativo e obtemos a volatilidade.

2° passo

Computa os resíduos padronizados do ajuste do modelo GARCH (as inovações \hat{a_{i,t}} divididas pela raiz da volatilidade estimada \sqrt{\hat{\sigma_{i,t}}})

3° passo

Calcula o coeficiente de correlação amostral simples entre os resíduos padronizados.

4° passo

Multiplica o coeficiente de correlação amostral simples dos ativos pelas volatilidades dos ativos.

    \[Cov_{t} = \rho \times \sigma_{1,t} \times \sigma_{2,t}\]

Exemplo

Vamos estimar a Covariância Dinâmica entre os retornos de duas ações: ITUB4 e MGLU3. Empregaremos o GARCH(1,1) obteremos a volatilidade e os resíduos padronizados estimados, calculamos a correlação entre os resíduos e obtemos a covariância dinâmica.

O gráfico abaixo expõe o valor da medida no tempo:

R

Python

_____________________

Quer saber mais?

Veja nossa trilha de cursos de Finanças Quantitativas

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Resultado IPCA-15 - Novembro/2024

A Análise Macro apresenta os resultados do IPCA-15 de Novembro de 2024, com gráficos elaborados em Python para coleta, tratamento e visualização de dados. Todo o conteúdo, disponível exclusivamente no Clube AM, foi desenvolvido com base nos métodos ensinados nos cursos da Análise Macro, permitindo aos assinantes acesso aos códigos e replicação das análises.

Resultado PNADc Trimestral - 3° Trimestre/2024

A Análise Macro apresenta os resultados da PNADc Trimestral do 3º trimestre de 2024, com gráficos elaborados em Python para coleta, tratamento e visualização de dados. Todo o conteúdo, disponível exclusivamente no Clube AM, foi desenvolvido com base nos métodos ensinados nos cursos da Análise Macro, permitindo aos assinantes acesso aos códigos e replicação das análises.

Análise exploratória para modelagem preditiva no Python

Antes de desenvolver bons modelos preditivos é necessário organizar e conhecer muito bem os dados. Neste artigo, damos algumas dicas de recursos, como gráficos, análises e estatísticas, que podem ser usados para melhorar o entendimento sobre os dados usando Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.