Analisando a inflação por faixa de renda no Python

Existem diversas maneiras de analisar a taxa de inflação de uma economia, dentre elas:

  • Análise do índice cheio;
  • Análise dos grupos do índice;
  • Análise regional;
  • Análise dos núcleos;
  • Análise de difusão;
  • Análise das classficações de subitens.

Aprenda mais sobre análise da inflação através do curso de Análise de Conjuntura usando Python.

Apesar de todas estas análises permitirem investigar a evolução do custo de vida dos brasileiros, elas colocam o cobrador de ônibus e o gerente de banco em uma sacola só. Em outras palavras, perfis diferentes de renda podem estar expostos a custos de vida diferentes, o que faz com que uma análise por faixa de renda seja relevante.

Indicador IPEA de inflação por faixa de renda

O IPEA calcula desde 2017 indicadores mensais de inflação por faixa de renda. No total são 6 faixas de renda analisadas:

Faixa de renda Renda domiciliar (R$ jan./2023)
Renda muito baixa Menor que R$ 2.015,18
Renda baixa Entre R$ 2,015,18 e R$ 3.022,76
Renda média-baixa Entre R$ 3.022,76 e R$ 5.037,94
Renda média Entre R$ 5.037,94 e R$ 10.075,88
Renda média-alta Entre R$ 10.075,88 e R$ 20.151,75
Renda alta Maior que R$ 20.151,76

Estes indicadores segmentados permitem comparar o custo de vida, em termos de inflação, das faixas de renda, além de possibilitar a identificação dos itens que mais contribuiram para uma faixa ou outra.

Coletando dados do IPEA no Python

Para coletar e analisar dados de inflação por faixa de renda na variação acumulada em 12 meses, podemos utilizar o código de Python abaixo:

Para obter o código deste exercício faça parte do Clube AM e receba semanalmente códigos de ciência de dados em R e Python!

Conclusão

Neste artigo mostramos como coletar dados de inflação segmentados por faixa de renda e como calcular a variação acumulada em 12 meses usando a linguagem de programação Python.

Quer aprender mais?

Clique aqui para fazer seu cadastro no Boletim AM e baixar o código que produziu este exercício, além de receber novos exercícios com exemplos reais de análise de dados envolvendo as áreas de Data Science, Econometria, Machine Learning, Macroeconomia Aplicada, Finanças Quantitativas e Políticas Públicas diretamente em seu e-mail.

Referências

Lameiras, M. A. P.; Sacchet, S.; Souza-Júnior, J. R.C. Indicador Ipea de Inflação por Faixa de Renda. Carta de Conjuntura, n. 37, 16 nov. 2017. Disponível em: <http://www.ipea.gov.br/cartadeconjuntura/index.php/2017/11/16/inflacao-por-faixa-de-renda/>.

Notas de rodapé

  1. Veja a metodologia em Lameiras et al. (2017).↩︎

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar Modelos de Linguagem no R com o pacote {elmer}

Na análise de dados contemporânea, o uso de Modelos de Linguagem (LLMs) vem se consolidando como uma ferramenta poderosa para automatizar e aprimorar tarefas analíticas. Ao integrarmos LLMs a pacotes como o ellmer, podemos ampliar nossas capacidades de extração, interpretação e automação de dados no ambiente R. Neste post, exploramos o papel desses modelos e detalhamos como o ellmer opera dentro do universo da linguagem de programação R.

Introdução ao AutoGen: Agentes Inteligentes na Análise Financeira

O AutoGen é um framework da Microsoft que permite criar agentes de IA colaborativos. Na área financeira, pode automatizar a coleta de dados, cálculos de indicadores e geração de relatórios. Este artigo apresenta os conceitos básicos e um exemplo aplicado a ações de empresas.

Como usar LangGraph e LLMs para prever a inflação no Brasil

Este post apresenta um estudo de caso sobre como utilizar o LangGraph e modelos de linguagem para estruturar um sistema multiagente voltado à previsão do IPCA. O exercício cria um sistema que utiliza-se de personas analíticas que trabalham em paralelo, permitindo validar previsões, calcular métricas de erro e consolidar relatórios automatizados. A abordagem demonstra como fluxos multiagentes podem apoiar a análise econômica, oferecendo múltiplas perspectivas e maior consistência nos resultados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.